NM-2201

Last updated
NM-2201
NM-2201 structure.png
Legal status
Legal status
Identifiers
  • Naphthalen-1-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C24H22FNO2
Molar mass 375.443 g·mol−1
3D model (JSmol)
  • FCCCCCN1C=C(C(OC2=C(C=CC=C3)C3=CC=C2)=O)C4=CC=CC=C41
  • InChI=1S/C24H22FNO2/c25-15-6-1-7-16-26-17-21(20-12-4-5-13-22(20)26)24(27)28-23-14-8-10-18-9-2-3-11-19(18)23/h2-5,8-14,17H,1,6-7,15-16H2
  • Key:PRGFSQYZCKCBQO-UHFFFAOYSA-N

NM-2201 (also known as CBL-2201 and NA-5F-PIC [1] ) is an indole-based synthetic cannabinoid that presumably has similar properties to the closely related 5F-PB-22 and NNE1, which are both full agonists and unselectively bind to CB1 and CB2 receptors with low nanomolar affinity. [2] [3] [4] [5]

Contents

Pharmacology

NM-2201 acts as a full agonist with a binding affinity of 0.332 nM at CB1 and 0.732 nM at CB2 cannabinoid receptors. [6] It has been linked to serious adverse events in users. [7]

NM-2201 is specifically banned in Sweden, [8] Germany (Anlage II), [9] and Japan [10] but is also controlled in many other jurisdictions under analogue laws.

On May 30, 2018 the United States Drug Enforcement Administration, Department of Justice published a notice of intent to place NM-2201 and 4 other synthetic cannabinoids in schedule I of the Controlled Substances Act. This notice went into effect on June 29, 2018. [11]

Use

NM-2201 was linked to an incident in December 2015 where 25-30 people in Ocala, FL were taken to hospitals after experiencing seizures. [11]

See also

Related Research Articles

<span class="mw-page-title-main">MN-18</span> Chemical compound

MN 18 is an indazole-based synthetic cannabinoid that is an agonist for the cannabinoid receptors, with Ki values of 45.72 nM at CB1 and 11.098 nM at CB2 and EC50 values of 2.028 nM at CB1 and 1.233 nM at CB2, and has been sold online as a designer drug. It is the indazole core analogue of NNE1. Given the known metabolic liberation (and presence as an impurity) of amantadine in the related compound APINACA, it is suspected that metabolic hydrolysis of the amide group of MN-18 may release 1-naphthylamine, a known carcinogen. MN-18 metabolism has been described in literature.

<span class="mw-page-title-main">APINACA</span> Chemical compound

APINACA (AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide) is a drug that acts as a reasonably potent agonist for the cannabinoid receptors. It is a full agonist at CB1 with an EC50 of 142 nM and Ki of 3.24 nM (compared to the Ki of Δ9-THC at 28.35 nM and JWH-018 at 9.62 nM), while at CB2 it acts as a partial agonist with an EC50 of 141 nM and Ki of 1.68 nM (compared to the Ki of Δ9-THC at 37.82 nM and JWH-018 at 8.55 nM). Its pharmacological characterization has also been reported in a discontinued patent application. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in March 2012 as an ingredient in synthetic cannabis smoking blends, along with a related compound APICA. Structurally, it closely resembles cannabinoid compounds from a University of Connecticut patent, but with a simple pentyl chain on the indazole 1-position, and APINACA falls within the claims of this patent despite not being disclosed as an example.

<span class="mw-page-title-main">EAM-2201</span> Chemical compound

EAM-2201 is a drug that presumably acts as a potent agonist for the cannabinoid receptors. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in July 2012 as an ingredient in synthetic cannabis smoking blends Like the closely related MAM-2201 which had been first reported around a year earlier, EAM-2201 thus appears to be another novel compound invented by designer drug suppliers specifically for recreational use. Structurally, EAM-2201 is a hybrid of two known cannabinoid compounds JWH-210 and AM-2201, both of which had previously been used as active ingredients in synthetic cannabis blends before being banned in many countries.

<span class="mw-page-title-main">APICA (synthetic cannabinoid drug)</span> Chemical compound

APICA is an indole based drug that acts as a potent agonist for the cannabinoid receptors.

<span class="mw-page-title-main">PB-22</span> Chemical compound

PB-22 is a designer drug offered by online vendors as a cannabimimetic agent, and detected being sold in synthetic cannabis products in Japan in 2013. PB-22 represents a structurally unique synthetic cannabinoid chemotype, since it contains an ester linker at the indole 3-position, rather than the precedented ketone of JWH-018 and its analogs, or the amide of APICA and its analogs.

<span class="mw-page-title-main">QUCHIC</span> Chemical compound

QUCHIC is a designer drug offered by online vendors as a cannabimimetic agent, and was first detected being sold in synthetic cannabis products in Japan in early 2013, and subsequently also in New Zealand. The structure of QUCHIC appears to use an understanding of structure-activity relationships within the indole class of cannabimimetics, although its design origins are unclear. QUCHIC, along with QUPIC, represents a structurally unique synthetic cannabinoid chemotype since it contains an ester linker at the indole 3-position rather than the precedented ketone of JWH-018 and its analogues, or the amide of SDB-001 and its analogues.

<span class="mw-page-title-main">5F-PB-22</span> Chemical compound

5F-PB-22 is a designer drug which acts as a cannabinoid agonist. The structure of 5F-PB-22 appears to have been designed with an understanding of structure–activity relationships within the indole class of cannabinoids.

<span class="mw-page-title-main">SDB-006</span> Chemical compound

SDB-006 is a drug that acts as a potent agonist for the cannabinoid receptors, with an EC50 of 19 nM for human CB2 receptors, and 134 nM for human CB1 receptors. It was discovered during research into the related compound SDB-001 which had been sold illicitly as "2NE1". SDB-006 metabolism has been described in literature.

<span class="mw-page-title-main">THJ-2201</span> Synthetic cannabinoid

THJ-2201 is an indazole-based synthetic cannabinoid that presumably acts as a potent agonist of the CB1 receptor and has been sold online as a designer drug.

<span class="mw-page-title-main">5F-AB-PINACA</span> Chemical compound

5F-AB-PINACA is an indazole-based synthetic cannabinoid that is derived from a series of compounds originally developed by Pfizer in 2009 as an analgesic medication, and has been sold online as a designer drug.

<span class="mw-page-title-main">5F-APINACA</span> Chemical compound

5F-APINACA is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. Structurally it closely resembles cannabinoid compounds from patent WO 2003/035005 but with a 5-fluoropentyl chain on the indazole 1-position, and 5F-APINACA falls within the claims of this patent, as despite not being disclosed as an example, it is very similar to the corresponding pentanenitrile and 4-chlorobutyl compounds which are claimed as examples 3 and 4.

<span class="mw-page-title-main">NNE1</span> Chemical compound

NNE1 (also known as NNEI, MN-24 and AM-6527) is an indole-based synthetic cannabinoid, representing a molecular hybrid of APICA and JWH-018 that is an agonist for the cannabinoid receptors, with Ki values of 60.09 nM at CB1 and 45.298 nM at CB2 and EC50 values of 9.481 nM at CB1 and 1.008 nM at CB2. It was invented by Abbott and has a CB1 receptor pEC50 of 8.9 with around 80x selectivity over the related CB2 receptor. It is suspected that metabolic hydrolysis of the amide group of NNE1 may release 1-naphthylamine, a known carcinogen, given the known metabolic liberation (and presence as an impurity) of amantadine in the related compound APINACA, and NNE1 was banned in New Zealand in 2012 as a temporary class drug to stop it being used as an ingredient in then-legal synthetic cannabis products. NNE1 was subsequently found to be responsible for the death of a man in Japan in 2014.

<span class="mw-page-title-main">5F-CUMYL-PINACA</span> Chemical compound

5F-CUMYL-PINACA (also known as SGT-25 and sometimes sold in e-cigarette form as C-Liquid) is an indazole-3-carboxamide based synthetic cannabinoid. 5F-CUMYL-PINACA acts as a potent agonist for the cannabinoid receptors, with the original patent claiming approximately 4x selectivity for CB1, having an EC50 of <0.1 nM for human CB1 receptors and 0.37 nM for human CB2 receptors. In more recent assays using different techniques, 5F-CUMYL-PINACA was variously found to have an EC50 of 0.43 nM at CB1 and 11.3 nM at CB2, suggesting a somewhat higher CB1 selectivity of 26 times, or alternatively 15.1 nM at CB1 and 34.8 nM at CB2 with only 2.3 times selectivity, however these figures cannot be directly compared due to the different assay techniques used in each case.

<span class="mw-page-title-main">MDMB-FUBINACA</span> Chemical compound

MDMB-FUBINACA (also known as MDMB(N)-Bz-F and FUB-MDMB) is an indazole-based synthetic cannabinoid that is a potent agonist for the cannabinoid receptors, with Ki values of 1.14 nM at CB1 and 0.1228 nM at CB2 and EC50 values of 0.2668 nM at CB1 and 0.1411 nM at CB2, and has been sold online as a designer drug. Its benzyl analogue (instead of 4-fluorobenzyl) has been reported to be a potent agonist for the CB1 receptor (Ki = 0.14 nM, EC50 = 2.42 nM). The structure of MDMB-FUBINACA contains the amino acid, 3-methylvaline or tert-leucine methyl ester.

<span class="mw-page-title-main">FUB-PB-22</span> Chemical compound

FUB-PB-22 (QUFUBIC) is an indole-based synthetic cannabinoid that is a potent agonist of the CB1 receptor and has been sold online as a designer drug.

<span class="mw-page-title-main">CUMYL-4CN-BINACA</span> Chemical compound

CUMYL-4CN-BINACA (also known as CUMYL-CYBINACA or SGT-78) is an indazole-3-carboxamide based synthetic cannabinoid that has been sold online as a designer drug. It is a potent agonist for cannabinoid receptors CB1 and CB2, with in vitro EC50 values of 0.58 nM and 6.12 nM, respectively. In mice, CUMYL-4CN-BINACA produces hypothermic and pro-convulsant effects via the CB1 receptor, and anecdotal reports suggest it has an active dose of around 0.1 mg in humans.

<span class="mw-page-title-main">5F-MDMB-PICA</span> Chemical compound

5F-MDMB-PICA is a designer drug and synthetic cannabinoid. In 2018, it was the fifth-most common synthetic cannabinoid identified in drugs seized by the Drug Enforcement Administration.

<span class="mw-page-title-main">5F-CUMYL-PEGACLONE</span> Chemical compound

5F-CUMYL-PEGACLONE (5F-SGT-151, SGT-269) is a gamma-carboline based synthetic cannabinoid that has been sold as a designer drug, first being identified in Germany in 2017. It acts as a potent full agonist of the CB1 receptor. It appears to be more toxic than related compounds such as CUMYL-PEGACLONE, and has been linked to numerous serious adverse reactions, some fatal.

<span class="mw-page-title-main">ADB-BINACA</span> Chemical compound

ADB-BINACA is a cannabinoid designer drug that has been found as an ingredient in some synthetic cannabis products. It was originally developed by Pfizer as a potential analgesic, and is a potent agonist of the CB1 receptor with a binding affinity (Ki) of 0.33 nM and an EC50 of 14.7 nM.

References

  1. Pulver, Benedikt; Fischmann, Svenja; Gallegos, Ana; Christie, Rachel (March 2023). "EMCDDA framework and practical guidance for naming synthetic cannabinoids". Drug Testing and Analysis. 15 (3): 255–276. doi:10.1002/dta.3403.
  2. Kondrasenko AA, Goncharov EV, Dugaev KP, Rubaylo AI (December 2015). "CBL-2201. Report on a new designer drug: Napht-1-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate". Forensic Science International. 257: 209–213. doi:10.1016/j.forsciint.2015.08.023. PMID   26386336.
  3. "NM-2201". Cayman Chemical. Retrieved 9 July 2015.
  4. Namera A, Kawamura M, Nakamoto A, Saito T, Nagao M (2015). "Comprehensive review of the detection methods for synthetic cannabinoids and cathinones". Forensic Toxicology. 33 (2): 175–194. doi:10.1007/s11419-015-0270-0. PMC   4525208 . PMID   26257831.
  5. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Baranovsky A, Shafran Y (November 2014). "Synthetic cannabinoids as designer drugs: new representatives of indol-3-carboxylates series and indazole-3-carboxylates as novel group of cannabinoids. Identification and analytical data". Forensic Science International. 244: 263–75. doi:10.1016/j.forsciint.2014.09.013. PMID   25305529.
  6. Hess C, Schoeder CT, Pillaiyar T, Madea B, Müller CE (2016). "Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice". Forensic Toxicology. 34 (2): 329–343. doi:10.1007/s11419-016-0320-2. PMC   4929166 . PMID   27429655.
  7. Samra K, Boon IS, Packer G, Jacob S (April 2017). "black mamba". BMJ Case Reports. 2017: bcr–2016–218431. doi:10.1136/bcr-2016-218431. PMC   5534782 . PMID   28433979.
  8. "Cannabinoider föreslås bli klassade som hälsofarlig vara" (in Swedish). Folkhälsomyndigheten. Retrieved 9 July 2015.
  9. "Gesetz über den Verkehr mit Betäubungsmitteln Anlage II". www.gesetze-im-internet.de (in German). Bundesministerium der Justiz und für Verbraucherschutz. Retrieved 24 October 2016.
  10. Diao X, Carlier J, Zhu M, Pang S, Kronstrand R, Scheidweiler KB, Huestis MA (January 2017). "In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201)". Forensic Toxicology. 35 (1): 20–32. doi:10.1007/s11419-016-0326-9. PMC   5342258 . PMID   28286577.
  11. 1 2 "2018 - Temporary Placement of NM2201, 5F-AB-PINACA, 4-CN-CUMYL-BUTINACA, MMB-CHMICA and 5F-CUMYL-P7AICA Into Schedule I". www.deadiversion.usdoj.gov. Retrieved 2018-06-15.