2-Aminotetralin

Last updated
2-Aminotetralin
2-Aminotetralin Structure.svg
Clinical data
Routes of
administration
Oral
ATC code
  • none
Legal status
Legal status
  • In general: uncontrolled
Identifiers
  • 1,2,3,4-tetrahydronaphthalen-2-amine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.019.067 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C10H13N
Molar mass 147.221 g·mol−1
3D model (JSmol)
  • C1CC2=CC=CC=C2CC1N
  • InChI=1S/C10H13N/c11-10-6-5-8-3-1-2-4-9(8)7-10/h1-4,10H,5-7,11H2 Yes check.svgY
  • Key:LCGFVWKNXLRFIF-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

2-Aminotetralin (2-AT), also known as 1,2,3,4-tetrahydronaphthalen-2-amine (THN), is a stimulant drug with a chemical structure consisting of a tetralin group combined with an amine. [1] [2]

Contents

2-AT is a rigid analogue of phenylisobutylamine and fully substitutes for d-amphetamine in rat drug discrimination tests, although at one-half to one-eighth the potency. [1] [3] It showed greater potency than a variety of other amphetamine homologues, including 2-aminoindane (2-AI), 1-naphthylaminopropane (1-NAP), 2-naphthylaminopropane (2-NAP), 1-phenylpiperazine (1-PP), 6-AB Tooltip 6-amino-6,7,8,9-tetrahydro-5H-benzocycloheptene, and 7-AB Tooltip 7-amino-6,7,8,9-tetrahydro-5H-benzocycloheptene. [3] [1]

2-AT has been shown to inhibit the reuptake of serotonin and norepinephrine, and might induce their release as well. [4] [5] It is also likely to act on dopamine on account of its full substitution of d-amphetamine in rodent studies. [1] [3]

Chemical derivatives

A number of derivatives of 2-aminotetralin exist, including:

See also

Related Research Articles

<span class="mw-page-title-main">Iprindole</span> Atypical tricyclic antidepressant

Iprindole, sold under the brand names Prondol, Galatur, and Tertran, is an atypical tricyclic antidepressant (TCA) that has been used in the United Kingdom and Ireland for the treatment of depression but appears to no longer be marketed. It was developed by Wyeth and was marketed in 1967. The drug has been described by some as the first "second-generation" antidepressant to be introduced. However, it was very little-used compared to other TCAs, with the number of prescriptions dispensed only in the thousands.

<span class="mw-page-title-main">Cyclopentamine</span> Decongestant and stimulant drug

Cyclopentamine is a sympathomimetic alkylamine, classified as a vasoconstrictor. Cyclopentamine was indicated in the past as an over-the-counter (OTC) medication for use as a nasal decongestant, notably in Europe and Australia, but has now been largely discontinued.

<span class="mw-page-title-main">Propylamphetamine</span> Chemical compound

Propylamphetamine is a psychostimulant of the amphetamine family which was never marketed. It was first developed in the 1970s, mainly for research into the metabolism of, and as a comparison tool to, other amphetamines.

<span class="mw-page-title-main">Naphthylaminopropane</span> Chemical compound

Naphthylaminopropane, also known as naphthylisopropylamine (NIPA), is an experimental drug that was under investigation for the treatment of alcohol and stimulant addiction.

<i>N</i>-Methylphenethylamine Chemical compound

N-Methylphenethylamine (NMPEA) is a naturally occurring trace amine neuromodulator in humans that is derived from the trace amine, phenethylamine (PEA). It has been detected in human urine and is produced by phenylethanolamine N-methyltransferase with phenethylamine as a substrate, which significantly increases PEA's effects. PEA breaks down into phenylacetaldehyde which is further broken down into phenylacetic acid by monoamine oxidase. When this is inhibited by monoamine oxidase inhibitors, it allows more of the PEA to be metabolized into nymphetamine (NMPEA) and not wasted on the weaker inactive metabolites.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptors, or 5-HT receptors, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarization and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

<span class="mw-page-title-main">8-OH-DPAT</span> Chemical compound

8-OH-DPAT is a research chemical of the aminotetralin chemical class which was developed in the 1980s and has been widely used to study the function of the 5-HT1A receptor. It was one of the first major 5-HT1A receptor full agonists to have been discovered.

<i>para</i>-Chloroamphetamine Chemical compound

para-Chloroamphetamine (PCA), also known as 4-chloroamphetamine (4-CA), is a substituted amphetamine and monoamine releaser similar to MDMA, but with substantially higher activity as a monoaminergic neurotoxin, thought to be due to the unrestrained release of both serotonin and dopamine by a metabolite. It is used as a neurotoxin by neurobiologists to selectively kill serotonergic neurons for research purposes, in the same way that 6-hydroxydopamine is used to kill dopaminergic neurons.

<span class="mw-page-title-main">MDAI</span> Chemical compound

MDAI, also known as 5,6-methylenedioxy-2-aminoindane, is an entactogen drug of the 2-aminoindane group which is related to MDMA and produces similar subjective effects.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters. The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; monoamine releasing agents can induce the release of one or more of these neurotransmitters.

<span class="mw-page-title-main">Amfonelic acid</span> Chemical compound

Amfonelic acid is a research chemical and dopaminergic stimulant with antibiotic properties. Limited clinical trials have been conducted, and it is primarily used in scientific research.

<span class="mw-page-title-main">2-Aminoindane</span> Chemical compound

2-Aminoindane (2-AI) is an aminoindane and research chemical with applications in neurologic disorders and psychotherapy that has also been sold as a designer drug. It acts as a selective substrate for NET and DAT.

A serotonin releasing agent (SRA) is a type of drug that induces the release of serotonin into the neuronal synaptic cleft. A selective serotonin releasing agent (SSRA) is an SRA with less significant or no efficacy in producing neurotransmitter efflux at other types of monoamine neurons, including dopamine and norepinephrine neurons.

<span class="mw-page-title-main">TDIQ</span> Chemical compound

TDIQ is a drug used in scientific research, which has anxiolytic and anorectic effects in animals. It has an unusual effects profile in animals, with the effects generalising to cocaine and partially to MDMA and ephedrine, but the effects did not generalise to amphetamine and TDIQ does not have any stimulant effects. It is thought these effects are mediated via a partial agonist action at Alpha-2 adrenergic receptors, and TDIQ has been suggested as a possible drug for the treatment of cocaine dependence.

<span class="mw-page-title-main">7-OH-DPAT</span> Dopamine receptor agonist compound

7-OH-DPAT is a synthetic compound that acts as a dopamine receptor agonist with reasonable selectivity for the D3 receptor subtype, and low affinity for serotonin receptors, unlike its structural isomer 8-OH-DPAT. 7-OH-DPAT is self-administered in several animal models, and is used to study its addiction effects to cocaine.

<span class="mw-page-title-main">2-Amino-1,2-dihydronaphthalene</span> Chemical compound

2-Amino-1,2-dihydronapthalene, also known as 2-aminodilin (2-AD), is a stimulant drug. It is a rigid analogue of phenylisobutylamine and substitutes for amphetamine in rat drug discrimination tests, although at approximately one-fourth the potency. The drug is closely related to 2-aminotetralin, which also substitutes for amphetamine, and is about twice as potent as 2-AT in substituting for amphetamine. Other rigid analogues of amphetamine besides 2-ADN and 2-AT include 2-aminoindane (2-AI), 1-naphthylaminopropane (1-NAP), 2-naphthylaminopropane (2-NAP), 1-phenylpiperazine (1-PP), 6-ABTooltip 6-amino-6,7,8,9-tetrahydro-5H-benzocycloheptene, and 7-ABTooltip 7-amino-6,7,8,9-tetrahydro-5H-benzocycloheptene.

<span class="mw-page-title-main">Talsupram</span> Chemical compound

Talsupram is a selective norepinephrine reuptake inhibitor (NRI) which was investigated as an antidepressant in the 1960s and 1970s but was never marketed. Along with talopram, it is structurally related to the selective serotonin reuptake inhibitor (SSRI) citalopram.

<span class="mw-page-title-main">Phenylpiperazine</span> Chemical compound

1-Phenylpiperazine is a simple chemical compound and drug featuring a phenyl group bound to a piperazine ring. The suffix ‘-piprazole’ is sometimes used in the names of drugs to indicate they belong to this class.

<span class="mw-page-title-main">PNU-99,194</span> Chemical compound

PNU-99,194(A) (or U-99,194(A)) is a drug which acts as a moderately selective D3 receptor antagonist with ~15-30-fold preference for D3 over the D2 subtype. Though it has substantially greater preference for D3 over D2, the latter receptor does still play some role in its effects, as evidenced by the fact that PNU-99,194 weakly stimulates both prolactin secretion and striatal dopamine synthesis, actions it does not share with the more selective (100-fold) D3 receptor antagonists S-14,297 and GR-103,691.

(<i>R</i>)-1-Aminoindan Major metabolite of rasagiline

(R)-1-Aminoindan ((R)-1-AI; developmental code name TVP-136 or TV-136), or (R)-1-aminoindane, is the major metabolite of the selective MAO-B inhibitor and antiparkinsonian agent rasagiline ((R)-N-propargyl-1-aminoindan). In contrast to rasagiline, it lacks significant monoamine oxidase inhibition. In addition, unlike selegiline and its amphetamine metabolites, it lacks monoamine reuptake-inhibiting and -releasing activities and associated amphetamine-like psychostimulant effects. However, (R)-1-aminoindan retains neuroprotective effects and certain other activities.

References

  1. 1 2 3 4 Oberlender R, Nichols DE (March 1991). "Structural variation and (+)-amphetamine-like discriminative stimulus properties". Pharmacology, Biochemistry, and Behavior. 38 (3): 581–586. doi:10.1016/0091-3057(91)90017-V. PMID   2068194. S2CID   19069907. In previous studies, 2-AT either did not stimulate spontaneous motor activity in mice (1,8), or it had 10% of the activity of amphetamine (24). Yet, in the present study, it mimicked (+)-amphetamine as a DS in rats, in agreement with the results of Glennon et al. (7). However, 2-AT was one-half as potent as (+)-amphetamine in that study but only one-eighth as potent as (+)-amphetamine in the present experiment.
  2. Marley E, Stephenson JD (August 1971). "Actions of dexamphetamine and amphetamine-like amines in chickens with brain transections". British Journal of Pharmacology. 42 (4): 522–542. doi:10.1111/j.1476-5381.1971.tb07138.x. PMC   1665761 . PMID   5116035.
  3. 1 2 3 Glennon RA, Young R, Hauck AE, McKenney JD (December 1984). "Structure-activity studies on amphetamine analogs using drug discrimination methodology". Pharmacol Biochem Behav. 21 (6): 895–901. doi:10.1016/s0091-3057(84)80071-4. PMID   6522418.
  4. Bruinvels J (June 1971). "Evidence for inhibition of the reuptake of 5-hydroxytryptamine and noradrenaline by tetrahydronaphthylamine in rat brain". British Journal of Pharmacology. 42 (2): 281–286. doi:10.1111/j.1476-5381.1971.tb07109.x. PMC   1667157 . PMID   5091160.
  5. Bruinvels J, Kemper GC (September 1971). "Role of noradrenaline and 5-hydroxytryptamine in tetrahydronaphthylamine-induced temperature changes in the rat". British Journal of Pharmacology. 43 (1): 1–9. doi:10.1111/j.1476-5381.1971.tb07151.x. PMC   1665934 . PMID   4257629.