Hydrastinine

Last updated
Hydrastinine
Hydrastinine.png
Clinical data
Pregnancy
category
  •  ?
ATC code
  • none
Pharmacokinetic data
Metabolism Hepatic
Excretion Renal
Identifiers
  • 6-Methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinolin-5-ol
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.026.849 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C11H13NO3
Molar mass 207.226 g·mol−1
3D model (JSmol)
  • O1c2c(OC1)cc3c(c2)CCN(C3O)C
  • InChI=1S/C11H13NO3/c1-12-3-2-7-4-9-10(15-6-14-9)5-8(7)11(12)13/h4-5,11,13H,2-3,6H2,1H3 Yes check.svgY
  • Key:YOJQZPVUNUQTDF-UHFFFAOYSA-N Yes check.svgY
   (verify)

Hydrastinine is a semisynthetic alkaloid from the hydrolysis of the alkaloid hydrastine, which was found naturally in small quantities in Hydrastis canadensis L. (Ranunculaceae). Hydrastinine was produced by oxidative splitting of hydrastine hydrochloride with nitric acid in good yield. The drug was patented by Bayer as a haemostatic drug during the 1910s.

The first known synthesis of methylenedioxymethamphetamine (MDMA) was actually an intermediate in the synthesis of the methylated analogue of hydrastinine, methylhydrastinine. It was only reviewed for its activity many years after its original synthesis. [1]

Hydrastinine has also been found as an impurity or side product in MDMA synthesis performed by low pressure amination of 3,4-methylenedioxyphenylpropan-2-one with methylamine. [2]

Related Research Articles

<span class="mw-page-title-main">MDMA</span> Psychoactive drug, often called ecstasy

3,4-Methyl​enedioxy​methamphetamine (MDMA), commonly known as ecstasy, and molly or mandy, is a potent empathogen–entactogen with stimulant and minor psychedelic properties primarily used for recreational purposes. The purported pharmacological effects that may be prosocial include altered sensations, increased energy, empathy, and pleasure. When taken by mouth, effects begin in 30 to 45 minutes and last three to six hours.

<span class="mw-page-title-main">3,4-Methylenedioxyamphetamine</span> Empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family

3,4-Methylenedioxyamphetamine is an empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family that is encountered mainly as a recreational drug. In its pharmacology, MDA is a serotonin–norepinephrine–dopamine releasing agent (SNDRA). In most countries, the drug is a controlled substance and its possession and sale are illegal.

<i>para</i>-Methoxyamphetamine Chemical compound

para-Methoxyamphetamine (PMA), also known as 4-methoxyamphetamine (4-MA), is a designer drug of the amphetamine class with serotonergic effects. Unlike other similar drugs of this family, PMA does not produce stimulant, euphoriant, or entactogen effects, and behaves more like an antidepressant in comparison, though it does have some psychedelic properties.

<span class="mw-page-title-main">Methylone</span> Group of stereoisomers

Methylone, also known as 3,4-methylenedioxy-N-methylcathinone (MDMC), is an empathogen and stimulant psychoactive drug. It is a member of the amphetamine, cathinone and methylenedioxyphenethylamine classes.

Anton Köllisch was a German chemist who, whilst working at Darmstadt for pharmaceutical giant Merck, first described the synthesis of the chemical MDMA.

<span class="mw-page-title-main">Hydrastine</span> Chemical compound

Hydrastine is an isoquinoline alkaloid which was discovered in 1851 by Alfred P. Durand. Hydrolysis of hydrastine yields hydrastinine, which was patented by Bayer as a haemostatic drug during the 1910s. It is present in Hydrastis canadensis and other plants of the family Ranunculaceae.

<span class="mw-page-title-main">Substituted methylenedioxyphenethylamine</span> Class of psychoactive drugs

Substituted Methylenedioxyphenethylamines represent a diverse chemical class of compounds derived from phenethylamines. This category encompasses numerous psychoactive substances with entactogenic, psychedelic, and/or stimulant properties, in addition to entheogens. These compounds find application as research chemicals, designer drugs, and recreational substances.

<span class="mw-page-title-main">5-Methyl-MDA</span> Chemical compound

5-Methyl-3,4-methylenedioxyamphetamine (5-Methyl-MDA) is an entactogen and psychedelic designer drug of the amphetamine class. It is a ring-methylated homologue of MDA and a structural isomer of MDMA.

<span class="mw-page-title-main">5-APDB</span> Chemical compound

5-(2-Aminopropyl)-2,3-dihydrobenzofuran is a putative entactogen drug of the phenethylamine and amphetamine classes. It is an analogue of MDA where the heterocyclic 3-position oxygen from the 3,4-methylenedioxy ring has been replaced by a methylene bridge. 6-APDB is an analogue of 5-APDB where the 4-position oxygen has been replaced by a methylene bridge instead. 5-APDB was developed by a team led by David E. Nichols at Purdue University as part of their research into non-neurotoxic analogues of MDMA.

<span class="mw-page-title-main">MDAI</span> Chemical compound

MDAI (5,6-methylenedioxy-2-aminoindane) is a drug developed in the 1990s by a team led by David E. Nichols at Purdue University. It acts as a non-neurotoxic and highly selective serotonin releasing agent (SSRA) in vitro and produces entactogen effects in humans.

<span class="mw-page-title-main">3-Methoxy-4-methylamphetamine</span> Entactogen and psychedelic drug of the phenethylamine and amphetamine classes

3-Methoxy-4-methylamphetamine (MMA) is an entactogen and psychedelic drug of the phenethylamine and amphetamine classes. It was first synthesized in 1970 and was encountered as a street drug in Italy in the same decade. MMA was largely forgotten until being reassayed by David E. Nichols as a non-neurotoxic MDMA analogue in 1991, and has subsequently been sold as a designer drug on the internet since the late 2000s (decade).

<span class="mw-page-title-main">Homarylamine</span> Chemical compound

Homarylamine is an antitussive (anti-cough) drug which was patented in 1956 by Merck & Co., but has never been used medically as such.

Substituted amphetamines are a class of compounds based upon the amphetamine structure; it includes all derivative compounds which are formed by replacing, or substituting, one or more hydrogen atoms in the amphetamine core structure with substituents. The compounds in this class span a variety of pharmacological subclasses, including stimulants, empathogens, and hallucinogens, among others. Examples of substituted amphetamines are amphetamine (itself), methamphetamine, ephedrine, cathinone, phentermine, mephentermine, tranylcypromine, bupropion, methoxyphenamine, selegiline, amfepramone (diethylpropion), pyrovalerone, MDMA (ecstasy), and DOM (STP).

<span class="mw-page-title-main">6-APDB</span> Stimulant designer drug

6-(2-Aminopropyl)-2,3-dihydrobenzofuran is a stimulant and entactogen drug of the phenethylamine and amphetamine classes. It is an analogue of MDA where the heterocyclic 4-position oxygen from the 3,4-methylenedioxy ring has been replaced with a methylene bridge. 5-APDB (3-Desoxy-MDA) is an analogue of 6-APDB where the 3-position oxygen has been replaced with a methylene instead. 6-APDB, along with 5-APDB, was first synthesized by David E. Nichols in the early 1990s while investigating non-neurotoxic MDMA analogues.

<span class="mw-page-title-main">6-Methyl-MDA</span> Chemical compound

6-Methyl-3,4-methylenedioxyamphetamine (6-Methyl-MDA) is an entactogen and psychedelic drug of the amphetamine class. It was first synthesized in the late 1990s by a team including David E. Nichols at Purdue University while investigating derivatives of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxy-N-methylamphetamine (MDMA).

<span class="mw-page-title-main">DiFMDA</span> Chemical compound

Difluoromethylenedioxyamphetamine (DiFMDA) is a substituted derivative of 3,4-methylenedioxyamphetamine (MDA), which was developed by Daniel Trachsel and coworkers, along with the corresponding fluorinated derivatives of MDMA, MDEA, BDB and MBDB, with the aim of finding a non-neurotoxic drug able to be used as a less harmful substitute for entactogenic drugs such as MDMA. Since a major route of the normal metabolism of these compounds is scission of the methylenedioxy ring, producing neurotoxic metabolites such as alpha-methyldopamine, it was hoped that the difluoromethylenedioxy bioisostere would show increased metabolic stability and less toxicity.

<span class="mw-page-title-main">UWA-101</span> Chemical compound

UWA-101 is a phenethylamine derivative invented by Dr Matthew Piggott at the University of Western Australia, and researched as a potential treatment for Parkinson's disease. Its chemical structure is very similar to that of the illegal drug MDMA, the only difference being the replacement of the α-methyl group with an α-cyclopropyl group. MDMA has been found in animal studies and reported in unauthorised human self-experiments to be effective in the short-term relief of side-effects of Parkinson's disease therapy, most notably levodopa-induced dyskinesia. However the illegal status of MDMA and concerns about its potential for recreational use, neurotoxicity and potentially dangerous side effects mean that it is unlikely to be investigated for medical use in this application, and so alternative analogues were investigated.

<span class="mw-page-title-main">5-MAPDB</span> Chemical compound

5-MAPDB (1-(2,3-dihydrobenzofuran-5-yl)-N-methylpropan-2-amine) is a chemical compound which acts as an entactogenic drug. It is structurally related to drugs like 5-APDB and 5-MAPB, which have similar effects to MDMA and have been used as recreational drugs. 5-MAPDB has been studied to determine its pharmacological activity, and was found to be a relatively selective serotonin releaser, though with weaker actions as a releaser of other monoamines and 5-HT2 receptor family agonist, similar to older compounds such as 5-APDB.

<span class="mw-page-title-main">6-MAPDB</span> Chemical compound

6-MAPDB is a chemical compound which might be an entactogenic drug. It is structurally related to drugs like 6-APDB and 6-MAPB, which have similar effects to MDMA and have been used as recreational drugs. 6-MAPDB has never been studied to determine its pharmacological activity, though it is the N-methyl derivative of 6-APDB which is known to be a selective serotonin releaser.

MDMA-assisted psychotherapy is the use of prescribed doses of MDMA as an adjunct to psychotherapy sessions. Research suggests that MDMA-assisted psychotherapy for post-traumatic stress disorder (PTSD), including Complex PTSD, might improve treatment effectiveness. In 2017, a Phase II clinical trial led to "breakthrough therapy" designation by the US Food and Drug Administration (FDA).

References

  1. Freudenmann RW, Oxler F, Bernschneider-Reif S (September 2006). "The origin of MDMA (ecstasy) revisited: the true story reconstructed from the original documents". Addiction. 101 (9): 1241–5. doi: 10.1111/j.1360-0443.2006.01511.x . PMID   16911722.
  2. Verweij AM (1991). "[Contamination of illegal amphetamine. Hydrastatinine as a contaminant in 3,4-(methylenedioxy)methylamphetamine]". Archiv für Kriminologie. 188 (1–2): 54–7. PMID   1953248.