Benzylamine

Last updated
Benzylamine
Benzylamine2DCSD.svg
Benzylamine-from-xtal-3D-bs-17.png
Names
Preferred IUPAC name
Phenylmethanamine
Other names
α-Aminotoluene
Benzyl amine
Phenylmethylamine
Identifiers
3D model (JSmol)
741984
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.002.595 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-854-1
49783
KEGG
PubChem CID
RTECS number
  • DP1488500
UNII
UN number 2735
  • InChI=1S/C7H9N/c8-6-7-4-2-1-3-5-7/h1-5H,6,8H2 Yes check.svgY
    Key: WGQKYBSKWIADBV-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C7H9N/c8-6-7-4-2-1-3-5-7/h1-5H,6,8H2
    Key: WGQKYBSKWIADBV-UHFFFAOYAL
  • c1ccc(cc1)CN
Properties
C7H9N
Molar mass 107.156 g·mol−1
AppearanceColorless liquid
Odor weak, ammonia-like
Density 0.981 g/mL [1]
Melting point 10 °C (50 °F; 283 K) [2]
Boiling point 185 °C (365 °F; 458 K) [2]
Miscible [2]
Solubility miscible in ethanol, diethyl ether
very soluble in acetone
soluble in benzene, chloroform
Acidity (pKa)9.34 [3]
Basicity (pKb)4.66
-75.26·10−6 cm3/mol
1.543
Structure
1.38 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Flammable and corrosive
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H314
P260, P264, P270, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P363, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
2
0
Flash point 65 °C (149 °F; 338 K) [2] [1]
Safety data sheet (SDS) Fischer Scientific
Related compounds
Related amines
aniline
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Benzylamine is an organic chemical compound with the condensed structural formula C6H5CH2NH2 (sometimes abbreviated as PhCH2NH2 or BnNH2). It consists of a benzyl group, C6H5CH2, attached to an amine functional group, NH2. This colorless water-soluble liquid is a common precursor in organic chemistry and used in the industrial production of many pharmaceuticals. The hydrochloride salt was used to treat motion sickness on the Mercury-Atlas 6 mission in which NASA astronaut John Glenn became the first American to orbit the Earth.

Contents

Manufacturing

Benzylamine can be produced by several methods, the main industrial route being the reaction of benzyl chloride and ammonia. It is also produced by the reduction of benzonitrile and reductive amination of benzaldehyde, both done over Raney nickel. [4]

Benzonitrile hydrogenation.svg

It was first produced accidentally by Rudolf Leuckart in the reaction of benzaldehyde with formamide in a process now known as the Leuckart reaction, [5] a general process in which reductive amination of aldehydes or ketones yields the corresponding amine. [6] [7]

Biochemistry

Benzylamine occurs biologically from the action of the N-substituted formamide deformylase enzyme, which is produced by Arthrobacter pascens bacteria. [8] This hydrolase catalyses the conversion of N-benzylformamide into benzylamine with formate as a by-product. [9] Benzylamine is degraded biologically by the action of the monoamine oxidase B enzyme, [10] resulting in benzaldehyde. [11]

Uses

Benzylamine is used as a masked source of ammonia, since after N-alkylation, the benzyl group can be removed by hydrogenolysis: [12]

C6H5CH2NH2 + 2 RBr → C6H5CH2NR2 + 2 HBr
C6H5CH2NR2 + H2 → C6H5CH3 + R2NH

Typically a base is employed in the first step to absorb the HBr (or related acid for other kinds of alkylating agents).

Benzylamine reacts with acetyl chloride to form N-benzylacetamide.

Isoquinolines can be prepared from benzylamine and glyoxal acetal by an analogous approach known as the Schlittler-Müller modification to the Pomeranz–Fritsch reaction. This modification can also be used for preparing substituted isoquinolines. [13]

Synthesis of HNIW from benzylamine Synthesis CL20.svg
Synthesis of HNIW from benzylamine

Benzylamine is used in the manufacture of other pharmaceuticals, including alniditan, [14] lacosamide, [15] [16] moxifloxacin, [17] and nebivolol. [18]

Benzylamine is also used to manufacture the military explosive hexanitrohexaazaisowurtzitane (HNIW), which is superior to older nitroamine high explosives like HMX and RDX. Illustrating the debenzylation tendency of benzylamines, four of the benzyl groups are removed from hexabenzylhexaazaisowurtzitane by hydrogenolysis catalysed by palladium on carbon. [19]

Salts

The hydrochloride salt of benzylamine, C6H5CH2NH3Cl or C6H5CH2NH2·HCl, [20] is prepared by reacting benzylamine with hydrochloric acid, and can be used in treating motion sickness. NASA astronaut John Glenn was issued with benzylamine hydrochloride for this purpose for the Mercury-Atlas 6 mission. [21] The cation in this salt is called benzylammonium and is a moiety found in pharmaceuticals such as the anthelmintic agent bephenium hydroxynaphthoate, used in treating ascariasis. [22]

Other derivatives of benzylamine and its salts have been shown to have anti-emetic properties, including those with the N-(3,4,5-trimethoxybenzoyl)benzylamine moiety. [23] Commercially available motion-sickness agents including cinnarizine and meclizine are derivatives of benzylamine.

Other benzylamines

1-Phenylethylamine is a methylated benzylamine derivative that is chiral; enantiopure forms are obtained by resolving racemates. Its racemic form is sometimes known as (±)-α-methylbenzylamine. [24] Both benzylamine and 1-phenylethylamine form stable ammonium salts and imines due to their relatively high basicity.

Safety and environment

Benzylamine exhibits modest oral toxicity in rats with LD50 of 1130 mg/kg. It is readily biodegraded. [4]

Related Research Articles

<span class="mw-page-title-main">Phenethylamine</span> Organic compound, a stimulant in humans

Phenethylamine (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans. In the brain, phenethylamine regulates monoamine neurotransmission by binding to trace amine-associated receptor 1 (TAAR1) and inhibiting vesicular monoamine transporter 2 (VMAT2) in monoamine neurons. To a lesser extent, it also acts as a neurotransmitter in the human central nervous system. In mammals, phenethylamine is produced from the amino acid L-phenylalanine by the enzyme aromatic L-amino acid decarboxylase via enzymatic decarboxylation. In addition to its presence in mammals, phenethylamine is found in many other organisms and foods, such as chocolate, especially after microbial fermentation.

<span class="mw-page-title-main">Protecting group</span> Group of atoms introduced into a compound to prevent subsequent reactions

A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction. It plays an important role in multistep organic synthesis.

<span class="mw-page-title-main">Tyramine</span> Chemical compound

Tyramine, also known under several other names, is a naturally occurring trace amine derived from the amino acid tyrosine. Tyramine acts as a catecholamine releasing agent. Notably, it is unable to cross the blood-brain barrier, resulting in only non-psychoactive peripheral sympathomimetic effects following ingestion. A hypertensive crisis can result, however, from ingestion of tyramine-rich foods in conjunction with the use of monoamine oxidase inhibitors (MAOIs).

Hydrogenolysis is a chemical reaction whereby a carbon–carbon or carbon–heteroatom single bond is cleaved or undergoes lysis (breakdown) by hydrogen. The heteroatom may vary, but it usually is oxygen, nitrogen, or sulfur. A related reaction is hydrogenation, where hydrogen is added to the molecule, without cleaving bonds. Usually hydrogenolysis is conducted catalytically using hydrogen gas.

<span class="mw-page-title-main">Benzyl group</span> Chemical group (–CH₂–C₆H₅)

In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure R−CH2−C6H5. Benzyl features a benzene ring attached to a methylene group group.

<span class="mw-page-title-main">Formamide</span> Chemical compound

Formamide is an amide derived from formic acid. It is a colorless liquid which is miscible with water and has an ammonia-like odor. It is chemical feedstock for the manufacture of sulfa drugs and other pharmaceuticals, herbicides and pesticides, and in the manufacture of hydrocyanic acid. It has been used as a softener for paper and fiber. It is a solvent for many ionic compounds. It has also been used as a solvent for resins and plasticizers. Some astrobiologists suggest that it may be an alternative to water as the main solvent in other forms of life.

<span class="mw-page-title-main">Isoquinoline</span> Chemical compound

Isoquinoline is an individual chemical specimen - a heterocyclic aromatic organic compound - as well as the name of a family of many thousands of natural plant alkaloids, any one of which might be referred to as "an isoquinoline". It is a structural isomer of quinoline. Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring. In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in many naturally occurring alkaloids such as papaverine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine.

An isocyanide is an organic compound with the functional group –N+≡C. It is the isomer of the related nitrile (–C≡N), hence the prefix is isocyano. The organic fragment is connected to the isocyanide group through the nitrogen atom, not via the carbon. They are used as building blocks for the synthesis of other compounds.

<span class="mw-page-title-main">Benzyl chloroformate</span> Chemical compound

Benzyl chloroformate, also known as benzyl chlorocarbonate or Z-chloride, is the benzyl ester of chloroformic acid. It can be also described as the chloride of the benzyloxycarbonyl group. In its pure form it is a water-sensitive oily colorless liquid, although impure samples usually appear yellow. It possesses a characteristic pungent odor and degrades in contact with water.

The Leuckart reaction is the chemical reaction that converts aldehydes or ketones to amines by reductive amination in the presence of heat. The reaction, named after Rudolf Leuckart, uses either ammonium formate or formamide as the nitrogen donor and reducing agent. It requires high temperatures, usually between 120 and 130 °C; for the formamide variant, the temperature can be greater than 165 °C.

<span class="mw-page-title-main">Butenafine</span> Chemical compound

Butenafine, sold under the brand names Lotrimin Ultra, Mentax, and Butop, is a synthetic benzylamine derived antifungal drug.

<span class="mw-page-title-main">Pargyline</span> Chemical compound

Pargyline, sold under the brand name Eutonyl among others, is a monoamine oxidase inhibitor (MAOI) medication which has been used to treat hypertension but is no longer marketed. It has also been studied as an antidepressant, but was never licensed for use in the treatment of depression. The drug is taken by mouth.

<span class="mw-page-title-main">Fencamfamin</span> Chemical compound

Fencamfamin (INN), also known as fencamfamine or by the brand names Glucoenergan and Reactivan, is a stimulant which was developed by Merck in the 1960s.

<span class="mw-page-title-main">Dimethylbenzylamine</span> Chemical compound

Dimethylbenzylamine is the organic compound with the formula C6H5CH2N(CH3)2. The molecule consists of a benzyl group, C6H5CH2, attached to a dimethylamino functional group. It is a colorless liquid. It is used as a catalyst for the formation of polyurethane foams and epoxy resins.

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

<i>N</i>-Methylphenethylamine Chemical compound

N-Methylphenethylamine (NMPEA) is a naturally occurring trace amine neuromodulator in humans that is derived from the trace amine, phenethylamine (PEA). It has been detected in human urine and is produced by phenylethanolamine N-methyltransferase with phenethylamine as a substrate, which significantly increases PEA's effects. PEA breaks down into phenylacetaldehyde which is further broken down into phenylacetic acid by monoamine oxidase. When this is inhibited by monoamine oxidase inhibitors, it allows more of the PEA to be metabolized into nymphetamine (NMPEA) and not wasted on the weaker inactive metabolites.

<span class="mw-page-title-main">Monoamine oxidase B</span> Protein-coding gene in the species Homo sapiens

Monoamine oxidase B, also known as MAO-B, is an enzyme that in humans is encoded by the MAOB gene.

<span class="mw-page-title-main">Amine oxidase (copper-containing)</span>

Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes which includes both primary-amine oxidase and diamine oxidase; these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. They act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor:

In enzymology, a N-substituted formamide deformylase (EC 3.5.1.91) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Primary-amine oxidase</span>

Primary-amine oxidase, also known as semicarbazide-sensitive amine oxidase (SSAO), is an enzyme (EC 1.4.3.21) with the systematic name primary-amine:oxygen oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction

References

  1. 1 2 "Benzylamine". Sigma-Aldrich . Retrieved 28 December 2015.
  2. 1 2 3 4 Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  3. Hall, H. K. (1957). "Correlation of the Base Strengths of Amines". J. Am. Chem. Soc. 79 (20): 5441–5444. doi:10.1021/ja01577a030.
  4. 1 2 Heuer, L. (2006). "Benzylamines". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a04_009.pub2. ISBN   3527306730.
  5. Crossley, F. S.; Moore, M. L. (1944). "Studies on the Leuckart Reaction". J. Org. Chem. 9 (6): 529–536. doi:10.1021/jo01188a006.
  6. Webers, V. J.; Bruce, W. F. (1948). "The Leuckart Reaction: A study of the Mechanism". J. Am. Chem. Soc. 70 (4): 1422–1424. doi:10.1021/ja01184a038. PMID   18915755.
  7. Pollard, C. B.; Young, D. C. (1951). "The Mechanism of the Leuckart Reaction". J. Org. Chem. 16 (5): 661–672. doi:10.1021/jo01145a001.
  8. Schomburg, D.; Schomburg, I.; Chang, A., eds. (2009). "3.5.1.91 N-substituted formamide deformylase". Class 3 Hydrolases: EC 3.4.22–3.13. Springer Handbook of Enzymes (2nd ed.). Springer Science & Business Media. pp. 376–378. ISBN   9783540857051.
  9. Fukatsu, H.; Hashimoto, Y.; Goda, M.; Higashibata, H.; Kobayashi, M. (2004). "Amine-synthesizing enzyme N-substituted formamide deformylase: screening, purification, characterization, and gene cloning". Proc. Natl. Acad. Sci. 101 (38): 13726–13731. Bibcode:2004PNAS..10113726F. doi: 10.1073/pnas.0405082101 . PMC   518824 . PMID   15358859.
  10. "MAOB: Monoamine oxidase B – Homo sapiens". National Center for Biotechnology Information. 6 December 2015. Retrieved 29 December 2015.
  11. Tipton, K. F.; Boyce, S.; O'Sullivan, J.; Davey, G. P.; Healy, J. (2004). "Monoamine oxidases: Certainties and uncertainties". Curr. Med. Chem. 11 (15): 1965–1982. doi:10.2174/0929867043364810. PMID   15279561.
  12. Gatto, V. J.; Miller, S. R.; Gokel, G. W. (1993). "4,13-Diaza-18-Crown-6". Organic Syntheses ; Collected Volumes, vol. 8, p. 152. (example of alklylation of benzylamine followed by hydrogenolysis).
  13. Li, J. J. (2014). "Schlittler–Müller modification". Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications (5th ed.). Springer. p. 492. ISBN   9783319039794.
  14. Lommen, G.; De Bruyn, M.; Schroven, M.; Verschueren, W.; Janssens, W.; Verrelst, J.; Leysen, J. (1995). "The discovery of a series of new non-indole 5HT1D agonists". Bioorg. Med. Chem. Lett. 5 (22): 2649–2654. doi:10.1016/0960-894X(95)00473-7.
  15. Choi, D.; Stables, J. P.; Kohn, H. (1996). "Synthesis and anticonvulsant activities of N-Benzyl-2-acetamidopropionamide derivatives". J. Med. Chem. 39 (9): 1907–1916. doi:10.1021/jm9508705. PMID   8627614.
  16. Morieux, P.; Stables, J. P.; Kohn, H. (2008). "Synthesis and anticonvulsant activities of N-benzyl-(2R)-2-acetamido-3-oxysubstituted propionamide derivatives". Bioorg. Med. Chem. 16 (19): 8968–8975. doi:10.1016/j.bmc.2008.08.055. PMC   2701728 . PMID   18789868.
  17. Peterson, U. (2006). "Quinolone Antibiotics: The Development of Moxifloxacin". In IUPAC; Fischer, J.; Ganellin, C. R. (eds.). Analogue-based Drug Discovery. John Wiley & Sons. pp. 338–342. ISBN   9783527607495.
  18. USpatent 4654362,Van Lommen, G. R. E.; De Bruyn, M. F. L.& Schroven, M. F. J.,"Derivatives of 2,2'-iminobisethanol",published 1987-03-31, assigned to Janssen Pharmaceutica, N.V. . Full text
  19. Nair, U. R.; Sivabalan, R.; Gore, G. M.; Geetha, M.; Asthana, S. N.; Singh, H. (2005). "Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)". Combust. Explos. Shock Waves . 41 (2): 121–132. doi:10.1007/s10573-005-0014-2. S2CID   95545484.
  20. "Benzylamine hydrochloride". Sigma-Aldrich . Retrieved 28 December 2015.
  21. Swenson, L. S.; Grimwood, J. M.; Alexander, C. C. "13: Mercury Mission Accomplished (13.1 Preparing a Man to Orbit)". This New Ocean: A History of Project Mercury. nasa.gov. pp. 413–418.
  22. Hellgren, U.; Ericsson, Ö.; Aden Abdi, Y.; Gustafsson, L. L. (2003). "Bephenium hydroxynaphthoate". Handbook of Drugs for Tropical Parasitic Infections (2nd ed.). CRC Press. pp. 33–35. ISBN   9780203211519.
  23. USpatent 2879293,Sidney, T.& Goldberg, M. W.,"Benzylamine derivatives",published 1959-03-24,issued 1959-03-24, assigned to Hoffmann La Roche . Full text
  24. PubChem Public Chemical Database (26 December 2015). "1-Phenylethylamine". National Center for Biotechnology Information . Retrieved 29 December 2015.