Hexanitrohexaazaisowurtzitane

Last updated
Hexanitrohexaazaisowurtzitane
Partially condensed, stereo, skeletal formula of hexanitrohexaazaisowurtzitane CL-20.svg
Partially condensed, stereo, skeletal formula of hexanitrohexaazaisowurtzitane
Ball and stick model of hexazaisowurtzitane HNIW-3D-balls.png
Ball and stick model of hexazaisowurtzitane
Names
IUPAC name
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane
Other names
  • CL-20
  • Hexanitrohexaazaisowurtzitane
  • 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
  • Octahydro-1,3,4,7,8,10-hexanitro-5,2,6-(iminomethenimino)-1H-imidazo[4,5-b]pyrazine
  • HNIW
Identifiers
3D model (JSmol)
AbbreviationsCL-20, HNIW
ChEBI
ChemSpider
ECHA InfoCard 100.114.169 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C6H6N12O12/c19-13(20)7-1-2-8(14(21)22)5(7)6-9(15(23)24)3(11(1)17(27)28)4(10(6)16(25)26)12(2)18(29)30/h1-6H Yes check.svgY
    Key: NDYLCHGXSQOGMS-UHFFFAOYSA-N Yes check.svgY
  • [O-][N+](=O)N1C2C3N(C4C(N3[N+]([O-])=O)N(C(C1N4[N+]([O-])=O)N2[N+]([O-])=O)[N+]([O-])=O)[N+]([O-])=O
Properties
C
6
N
12
H
6
O
12
Molar mass 438.1850 g mol−1
Density 2.044 g cm−3
Explosive data
Detonation velocity 9,500 m/s
RE factor 1.9
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Hexanitrohexaazaisowurtzitane, also called HNIW and CL-20, is a polycyclic nitroamine explosive with the formula C6H6N12O12. In the 1980s, CL-20 was developed by the China Lake facility, primarily to be used in propellants. [1] It has a better oxidizer-to-fuel ratio than conventional HMX or RDX. It releases 20% more energy than traditional HMX-based propellants.

Contents

While most development of CL-20 has been fielded by the Thiokol Corporation, the US Navy (through ONR) has also been interested in CL-20 for use in rocket propellants, such as for missiles, as it has lower observability characteristics such as less visible smoke. [2]

Thus far, CL-20 has only been used in the AeroVironment Switchblade 300 “kamikaze” drone, but is undergoing testing for use in the Lockheed Martin [LMT] AGM-158C Long Range Anti-Ship Missile (LRASM) and AGM-158B Joint Air-to-Surface Standoff Missile-Extended Range (JASSM-ER). [3]

The Indian Armed Forces have also looked into CL-20. [4]

Synthesis

Synthesis of CL20 Synthesis CL20.svg
Synthesis of CL20

First, benzylamine (1) is condensed with glyoxal (2) under acidic and dehydrating conditions to yield the first intermediate compound.(3). Four benzyl groups selectively undergo hydrogenolysis using palladium on carbon and hydrogen. The amino groups are then acetylated during the same step using acetic anhydride as the solvent. (4). Finally, compound 4 is reacted with nitronium tetrafluoroborate and nitrosonium tetrafluoroborate, resulting in HNIW. [5]

Cocrystal product with HMX

In August 2012, Onas Bolton et al. published results showing that a cocrystal of 2 parts CL-20 and 1 part HMX had similar safety properties to HMX, but with a greater firing power closer to CL-20. [6] [7]

Cocrystal product with TNT

In August 2011, Adam Matzger and Onas Bolton published results showing that a cocrystal of CL-20 and TNT had twice the stability of CL-20—safe enough to transport, but when heated to 136 °C (277 °F) the cocrystal may separate into liquid TNT and a crystal form of CL-20 with structural defects that is somewhat less stable than CL-20. [8] [9]

CL-20 covalent chains and networks

In 2017, K.P. Katin and M.M. Maslov designed one-dimensional covalent chains based on the CL-20 molecules. [10] Such chains were constructed using CH
2
molecular bridges for the covalent bonding between the isolated CL-20 fragments. It was theoretically predicted that their stability increased with efficient length growth. A year later, M.A. Gimaldinova and colleagues demonstrated the versatility of CH
2
molecular bridges. [11] It is shown that the use of CH
2
bridges is the universal technique to connect both CL-20 fragments in the chain and the chains together to make a network (linear or zigzag). It is confirmed that the increase of the effective sizes and dimensionality of the CL-20 covalent systems leads to their thermodynamic stability growth. Therefore, the formation of CL-20 crystalline covalent solids seems to be energetically favorable, and CL-20 molecules are capable of forming not only molecular crystals but bulk covalent structures as well. Numerical calculations of CL-20 chains and networks' electronic characteristics revealed that they were wide-bandgap semiconductors. [10] [11]

See also

Related Research Articles

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; The inception of gunpowder rockets in warfare can be credited to ancient Chinese ingenuity, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.

<span class="mw-page-title-main">HMX</span> Chemical compound

HMX, also called octogen, is a powerful and relatively insensitive nitroamine high explosive, chemically related to RDX. The compound's name is the subject of much speculation, having been variously listed as High Melting Explosive, High-velocity Military Explosive, or High-Molecular-weight RDX.

Polymer-bonded explosives, also called PBX or plastic-bonded explosives, are explosive materials in which explosive powder is bound together in a matrix using small quantities of a synthetic polymer. PBXs are normally used for explosive materials that are not easily melted into a casting, or are otherwise difficult to form.

Octanitrocubane (molecular formula: C8(NO2)8) is a proposed high explosive that, like TNT, is shock-insensitive (not readily detonated by shock). The octanitrocubane molecule has the same chemical structure as cubane (C8H8) except that each of the eight hydrogen atoms is replaced by a nitro group (NO2). As of 1998, octanitrocubane had not been produced in quantities large enough to test its performance as an explosive.

<span class="mw-page-title-main">Dinitrogen pentoxide</span> Chemical compound

Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.

<span class="mw-page-title-main">FOX-7</span> Chemical compound

FOX-7 or 1,1-diamino-2,2-dinitroethylene(DADNE) is an insensitive high explosive compound. It was first synthesized in 1998 by the Swedish National Defence Research Institute (FOS). The name FOX-7 is derived from the acronym of the Swedish Defence Research Agency (FOI), with the I replaced by an X to indicate an explosive, as in RDX and HMX.

Nitroguanidine - sometimes abbreviated NGu - is a colorless, crystalline solid that melts at 257 °C and decomposes at 254 °C. Nitroguanidine is an extremely insensitive but powerful high explosive. Wetting it with > 20 wt.-% water effects desensitization from HD 1.1 down to HD 4.1 . Nitroguanidine is used as an energetic material, i.e., propellant or high explosive, precursor for insecticides, and for other purposes.

<span class="mw-page-title-main">Lithium perchlorate</span> Chemical compound

Lithium perchlorate is the inorganic compound with the formula LiClO4. This white or colourless crystalline salt is noteworthy for its high solubility in many solvents. It exists both in anhydrous form and as a trihydrate.

<span class="mw-page-title-main">TATB</span> Chemical compound

TATB, triaminotrinitrobenzene or 2,4,6-triamino-1,3,5-trinitrobenzene is an aromatic explosive, based on the basic six-carbon benzene ring structure with three nitro functional groups (NO2) and three amine (NH2) groups attached, alternating around the ring.

This is a compilation of published detonation velocities for various high explosive compounds. Detonation velocity is the speed with which the detonation shock wave travels through the explosive. It is a key, directly measurable indicator of explosive performance, but depends on density which must always be specified, and may be too low if the test charge diameter is not large enough. Especially for little studied explosives there may be divergent published values due to charge diameter issues. In liquid explosives, like nitroglycerin, there may be two detonation velocities, one much higher than the other. The detonation velocity values presented here are typically for the highest practical density which maximizes achievable detonation velocity.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide.

<span class="mw-page-title-main">Carbon monofluoride</span> Chemical compound

Carbon monofluoride (CF, CFx, or (CF)n), also called polycarbon monofluoride (PMF), polycarbon fluoride, poly(carbon monofluoride), and graphite fluoride, is a material formed by high-temperature reaction of fluorine gas with graphite, charcoal, or pyrolytic carbon powder. It is a highly hydrophobic microcrystalline powder. Its CAS number is 51311-17-2. In contrast to graphite intercalation compounds it is a covalent graphite compound.

<span class="mw-page-title-main">Benzylamine</span> Chemical compound

Benzylamine is an organic chemical compound with the condensed structural formula C6H5CH2NH2 (sometimes abbreviated as PhCH2NH2 or BnNH2). It consists of a benzyl group, C6H5CH2, attached to an amine functional group, NH2. This colorless water-soluble liquid is a common precursor in organic chemistry and used in the industrial production of many pharmaceuticals. The hydrochloride salt was used to treat motion sickness on the Mercury-Atlas 6 mission in which NASA astronaut John Glenn became the first American to orbit the Earth.

<span class="mw-page-title-main">Ammonium dinitramide</span> Chemical compound

Ammonium dinitramide (ADN) is an inorganic compound with the chemical formula [NH4][N(NO2)2]. It is the ammonium salt of dinitraminic acid HN(NO2)2. It consists of ammonium cations [NH4]+ and dinitramide anions N(NO2)2. ADN decomposes under heat to leave only nitrogen, oxygen, and water.

In materials science, cocrystals are "solids that are crystalline, single-phase materials composed of two or more different molecular or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts." A broader definition is that cocrystals "consist of two or more components that form a unique crystalline structure having unique properties." Several subclassifications of cocrystals exist.

<span class="mw-page-title-main">Two-dimensional polymer</span>

A two-dimensional polymer (2DP) is a sheet-like monomolecular macromolecule consisting of laterally connected repeat units with end groups along all edges. This recent definition of 2DP is based on Hermann Staudinger's polymer concept from the 1920s. According to this, covalent long chain molecules ("Makromoleküle") do exist and are composed of a sequence of linearly connected repeat units and end groups at both termini.

Adam J. Matzger, a researcher in polymers and crystals, is the Charles G. Overberger Collegiate Professor of Chemistry at the University of Michigan.

Tomislav Friščić holds the Leverhulme International Professorship and Chair in Green and Sustainable chemistry at the University of Birmingham. His research focus is at the interface of green chemistry and materials science, developing solvent-free chemistry and mechanochemistry for the cleaner, efficient synthesis of molecules and materials, including organic solids such as pharmaceutical cocrystals, coordination polymers and Metal-Organic Frameworks (MOFs), and a wide range of organic targets such as active pharmaceutical ingredients. He is a Fellow of the Royal Society of Chemistry (RSC), member of the College of New Scholars, Artists and Scientists of the Royal Society of Canada and a corresponding member of the Croatian Academy of Sciences and Arts. He has served on the Editorial Board of CrystEngComm, the Early Career Board of the ACS journal ACS Sustainable Chemistry & Engineering, and was an Associate Editor for the journal Molecular Crystals & Liquid Crystals as well as for the journal Synthesis. He was a Topic Editor and Social Media Editor, and is currently a member of the Editorial Advisory Board of the journal Crystal Growth & Design published by the American Chemical Society (ACS). He famously has a dog named Zizi.

<span class="mw-page-title-main">Iodine azide</span> Chemical compound

Iodine azide is an explosive inorganic compound, which in ordinary conditions is a yellow solid. Formally, it is an inter-pseudohalogen.

<span class="mw-page-title-main">Topochemical polymerization</span>

Topochemical polymerization is a polymerization method performed by monomers aligned in the crystal state. In this process, the monomers are crystallised and polymerised under external stimuli such as heat, light, or pressure. Compared to traditional polymerisation, the movement of monomers was confined by the crystal lattice in topochemical polymerisation, giving rise to polymers with high crystallinity, tacticity, and purity. Topochemical polymerisation can also be used to synthesise unique polymers such as polydiacetylene that are otherwise hard to prepare.

References

  1. Kadam, Tanmay (2023-03-11). "Pioneered By The US, China 'Racing Ahead' Of Its Arch Rival In 'CL-20' Tech That Propels PLA's Deadly Missiles". Eurasian Times.
  2. Yirka, Bob (9 September 2011). "University chemists devise means to stabilize explosive CL-20". Physorg.com. Archived from the original on 25 January 2021. Retrieved 8 July 2012.
  3. Wolfe, Frank (2023-03-28). "CL-20 Used in Switchblade 300, May See Wider Use in JASSM-ER, LRASM, Other Munitions". Defense Daily. Retrieved 2024-04-26.
  4. https://pib.gov.in/newsite/PrintRelease.aspx?relid=67872
  5. Nair, U. R.; Sivabalan, R.; Gore, G. M.; Geetha, M.; Asthana, S. N.; Singh, H. (2005). "Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)". Combust. Explos. Shock Waves . 41 (2): 121–132. doi:10.1007/s10573-005-0014-2. S2CID   95545484.
  6. Bolton, Onas (2012). "High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX". Crystal Growth & Design. 12 (9): 4311–4314. doi:10.1021/cg3010882.
  7. "Powerful new explosive could replace today's state-of-the-art military explosive". spacewar.com. 2012-09-06. Archived from the original on 2012-09-09.
  8. Bolton, Onas (2011). "Improved Stability and Smart-Material Functionality Realized in an Energetic Cocrystal". Angewandte Chemie International Edition. 50 (38): 8960–8963. doi:10.1002/anie.201104164. hdl: 2027.42/86799 . PMID   21901797.
  9. "Things I Won't Work With: Hexanitrohexaazaisowurtzitane". 11 November 2011. Archived from the original on 2015-09-03. Retrieved 2016-01-04.
  10. 1 2 Katin, Konstantin P.; Maslov, Mikhail M. (2017). "Toward CL-20 crystalline covalent solids: On the dependence of energy and electronic properties on the effective size of CL-20 chains". Journal of Physics and Chemistry of Solids . 108: 82–87. arXiv: 1611.08623 . Bibcode:2017JPCS..108...82K. doi:10.1016/j.jpcs.2017.04.020. S2CID   100118824.
  11. 1 2 Gimaldinova, Margarita A.; Maslov, Mikhail M.; Katin, Konstantin P. (2018). "Electronic and reactivity characteristics of CL-20 covalent chains and networks: a density functional theory study". CrystEngComm . 20 (30): 4336–4344. doi:10.1039/c8ce00763b.

Further reading