Iceane

Last updated
Iceane
Iceane-3D-sticks.png
Iceane-3D-vdW.png
Names
IUPAC name
Tetracyclo[5.3.1.12,6.04,9]dodecane
Other names
Wurtzitane
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C12H18/c1-7-2-11-3-8(1)10-4-9(7)5-12(11)6-10/h7-12H,1-6H2/t7-,8+,9+,10-,11-,12+ X mark.svgN
    Key: KZNNISMAUNEBPT-KUDAMMAASA-N X mark.svgN
  • InChI=1/C12H18/c1-7-2-11-3-8(1)10-4-9(7)5-12(11)6-10/h7-12H,1-6H2/t7-,8+,9+,10-,11-,12+
    Key: KZNNISMAUNEBPT-KUDAMMAABM
  • C1C2CC3CC1C4CC2CC3C4
Properties
C12H18
Molar mass 163.56 g/mol
Structure
D3h
0 D
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Iceane is a saturated polycyclic hydrocarbon with formula C12H18. It has a cage-like molecular structure, whose carbon skeleton can be viewed as three fused cyclohexane rings in the boat conformation; or as two such rings in the chair conformation, connected by three parallel (axial) bonds. The spatial arrangement of carbon atoms in iceane is the lonsdalite crystalline structure.

Contents

The name "iceane" was proposed by the chemist Louis Fieser about a decade before the compound was first prepared. He was carrying out studies on the arrangement of water molecules in ice, when it occurred to him that there could exist a stable hydrocarbon with the above structure. [1] [2]

It is also referred to as wurtzitane, [3] due to its similarity to the wurtzite crystal structure; [4] however, the name "iceane" has precedence.

See also

Related Research Articles

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

<span class="mw-page-title-main">Cycloalkane</span> Saturated alicyclic hydrocarbon

In organic chemistry, the cycloalkanes are the monocyclic saturated hydrocarbons. In other words, a cycloalkane consists only of hydrogen and carbon atoms arranged in a structure containing a single ring, and all of the carbon-carbon bonds are single. The larger cycloalkanes, with more than 20 carbon atoms are typically called cycloparaffins. All cycloalkanes are isomers of alkenes.

<span class="mw-page-title-main">Aromaticity</span> Chemical property

In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.

Cubane is a synthetic hydrocarbon compound with the formula C8H8, and that consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons and a member of the prismanes. It was first synthesized in 1964 by Philip Eaton and Thomas Cole. Before this work, Eaton believed that cubane would be impossible to synthesize due to the "required 90 degree bond angles". The cubic shape requires the carbon atoms to adopt an unusually sharp 90° bonding angle, which would be highly strained as compared to the 109.45° angle of a tetrahedral carbon. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths. It is the simplest hydrocarbon with octahedral symmetry.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Adamantane</span> Molecule with three connected cyclohexane rings arranged in the "armchair" configuration

Adamantane is an organic compound with a formula C10H16 or, more descriptively, (CH)4(CH2)6. Adamantane molecules can be described as the fusion of three cyclohexane rings. The molecule is both rigid and virtually stress-free. Adamantane is the most stable isomer of C10H16. The spatial arrangement of carbon atoms in the adamantane molecule is the same as in the diamond crystal. This similarity led to the name adamantane, which is derived from the Greek adamantinos (relating to steel or diamond). It is a white solid with a camphor-like odor. It is the simplest diamondoid.

<span class="mw-page-title-main">Louis Fieser</span> American organic chemist (1899–1977)

Louis Frederick Fieser was an American organic chemist, professor, and in 1968, professor emeritus at Harvard University. He invented militarily effective napalm while at Harvard in 1942. His award-winning research included work on blood-clotting agents including the first synthesis of vitamin K, synthesis and screening of quinones as antimalarial drugs, work with steroids leading to the synthesis of cortisone, and study of the nature of polycyclic aromatic hydrocarbons.

<span class="mw-page-title-main">Fluorene</span> Chemical compound

Fluorene, or 9H-fluorene is an organic compound with the formula (C6H4)2CH2. It forms white crystals that exhibit a characteristic, aromatic odor similar to that of naphthalene. It has a violet fluorescence, hence its name. For commercial purposes it is obtained from coal tar. It is insoluble in water and soluble in many organic solvents. Although sometimes classified as a polycyclic aromatic hydrocarbon, the five-membered ring has no aromatic properties. Fluorene is mildly acidic.

<span class="mw-page-title-main">Cyclic compound</span> Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

<span class="mw-page-title-main">Hexacene</span> Chemical compound

Hexacene is an aromatic compound consisting of six linearly-fused benzene rings. It is a blue-green, air-stable solid with low solubility.

In organic chemistry, propellane is any member of a class of polycyclic hydrocarbons, whose carbon skeleton consists of three rings of carbon atoms sharing a common carbon–carbon covalent bond. The concept was introduced in 1966 by D. Ginsburg Propellanes with small cycles are highly strained and unstable, and are easily turned into polymers with interesting structures, such as staffanes. Partly for these reasons, they have been the object of much research.

<span class="mw-page-title-main">Fenestrane</span> Chemical compound with four carbon rings sharing a single carbon atom

A fenestrane in organic chemistry is a type of chemical compound with a central quaternary carbon atom which serves as a common vertex for four fused carbocycles. They can be regarded as spiro compounds twice over. Because of their inherent strain and instability, fenestranes are of theoretical interest to chemists. The name—proposed in 1972 by Vlasios Georgian and Martin Saltzman—is derived from the Latin word for window, fenestra. Georgian had intended that "fenestrane" solely referred to [4.4.4.4]fenestrane, whose skeletal structure looks like windows, and Kenneth B. Wiberg called that specific structure "windowpane". The term fenestrane has since become generalized to refer to the whole class of molecules that have various other ring-sizes. Georgian recommended rosettane for the class, based on the structural appearance as a rosette of flowers.

F number is a correlation number used in the analysis of polycyclic aromatic hydrocarbons (PAHs) as a descriptor of their hydrophobicity and molecular size. It was proposed by Robert Hurtubise and co-workers in 1977.

<span class="mw-page-title-main">Biphenylene</span> Chemical compound

Biphenylene is an organic compound with the formula (C6H4)2. It is a pale, yellowish solid with a hay-like odor. Despite its unusual structure, it behaves like a traditional polycyclic aromatic hydrocarbon.

<span class="mw-page-title-main">Tetraphenylcyclopentadienone</span> Chemical compound

Tetraphenylcyclopentadienone is an organic compound with the formula (C6H5)4C4CO. It is a dark purple to black crystalline solid that is soluble in organic solvents. It is an easily made building block for many organic and organometallic compounds.

<span class="mw-page-title-main">Isomer</span> Chemical compounds with the same molecular formula but different atomic arrangements

In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism refers to the existence or possibility of isomers.

<span class="mw-page-title-main">Basketane</span> Chemical compound

Basketane is a polycyclic alkane with the chemical formula C10H12. The name is taken from its structural similarity to a basket shape. Basketane was first synthesized in 1966, independently by Masamune and Dauben and Whalen. A patent application published in 1988 used basketane, which is a hydrocarbon, as a source material in doping thin diamond layers because of the molecule's high vapor pressure, carbon ring structure, and fewer hydrogen-to-carbon bond ratio.

<span class="mw-page-title-main">Mallory reaction</span>

In organic chemistry, the Mallory reaction is a photochemical-cyclization–elimination reaction of diaryl-ethylene structures to form phenanthrenes and other polycyclic form polycyclic aromatic hydrocarbons and heteroaromatics. This name reaction is named for Frank Mallory, who discovered it while a graduate student.

<span class="mw-page-title-main">Olympicene</span> Chemical compound

Olympicene is an organic carbon-based molecule formed of five rings, of which four are benzene rings, joined in the shape of the Olympic rings.

The [4+4] Photocycloaddition is a cycloaddition reaction in which two unsaturated molecules connect via four atoms from each molecule to create an eight-membered ring. As a photochemical reaction, it is promoted by some form of light, as opposed to a thermal process.

References

  1. Fieser, L. F. (1965). "Extensions in the use of plastic tetrahedral models". J. Chem. Educ. 42 (8): 408–412. doi:10.1021/ed042p408.
  2. Hargittai, M.; Hargittai, I. (2013). "Polyhedral Molecular Geometries". In Senechal, M. (ed.). Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination. Springer Science & Business Media. pp. 153–170, 299. ISBN   9780387927145.
  3. Tobler, H.; Klaus, R. O.; Ganter, C. (1975). "Wurtzitan (Tetracyclo[5.3.1.12,6.04,9]dodecan)". Helv. Chim. Acta . 58 (5): 1455–1464. doi:10.1002/hlca.19750580522.
  4. Hamon, D. P. G.; Taylor, G. F. (1976). "A synthesis of tetracyclo[5,3,1,12,6,04,9]dodecane (iceane)". Aust. J. Chem. 29 (8): 1721–1734. doi:10.1071/CH9761721.