Amiflamine

Last updated
Amiflamine
Amiflamine.svg
Clinical data
Other names(+)-4-(dimethylamino)-α,2-dimethylphenethylamine
Routes of
administration
Oral
ATC code
  • none
Legal status
Legal status
  • In general: uncontrolled
Identifiers
  • 4-[(2S)-2-Aminopropyl]-N,N,3-trimethylaniline
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C12H20N2
Molar mass 192.306 g·mol−1
3D model (JSmol)
  • N(c1cc(c(cc1)C[C@@H](N)C)C)(C)C
  • InChI=1S/C12H20N2/c1-9-7-12(14(3)4)6-5-11(9)8-10(2)13/h5-7,10H,8,13H2,1-4H3/t10-/m0/s1 Yes check.svgY
  • Key:HFQMYSHATTXRTC-JTQLQIEISA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Amiflamine (FLA-336) is a reversible inhibitor of monoamine oxidase A (MAO-A), thereby being a RIMA, and, to a lesser extent, semicarbazide-sensitive amine oxidase (SSAO), as well as a serotonin releasing agent (SRA). [1] [2] [3] [4] It is a derivative of the phenethylamine and amphetamine chemical classes. [1] The (+)-enantiomer is the active stereoisomer. [2]

Amiflamine shows preference for inhibiting MAO-A in serotonergic relative to noradrenergic and dopaminergic neurons. [5] [6] In other words, at low doses, it can be used to selectively inhibit MAO-A enzymes in serotonin cells, whereas at higher doses it loses its selectivity. [5] [6] This property is attributed to amiflamine's higher affinity for the serotonin transporter over the norepinephrine and dopamine transporters, as transporter-mediated carriage is required for amiflamine to enter monoaminergic neurons. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Monoamine oxidase inhibitor</span> Type of medication

Monoamine oxidase inhibitors (MAOIs) are a class of drugs that inhibit the activity of one or both monoamine oxidase enzymes: monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B). They are best known as effective antidepressants, especially for treatment-resistant depression and atypical depression. They are also used to treat panic disorder, social anxiety disorder, Parkinson's disease, and several other disorders.

<span class="mw-page-title-main">Monoamine neurotransmitter</span> Monoamine that acts as a neurotransmitter or neuromodulator

Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, norepinephrine and serotonin.

<span class="mw-page-title-main">Phenethylamine</span> Organic compound, a stimulant in humans

Phenethylamine (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans. In the brain, phenethylamine regulates monoamine neurotransmission by binding to trace amine-associated receptor 1 (TAAR1) and inhibiting vesicular monoamine transporter 2 (VMAT2) in monoamine neurons. To a lesser extent, it also acts as a neurotransmitter in the human central nervous system. In mammals, phenethylamine is produced from the amino acid L-phenylalanine by the enzyme aromatic L-amino acid decarboxylase via enzymatic decarboxylation. In addition to its presence in mammals, phenethylamine is found in many other organisms and foods, such as chocolate, especially after microbial fermentation.

<span class="mw-page-title-main">Monoamine transporter</span>

Monoamine transporters (MATs) are protein structures that function as integral plasma-membrane transporters to regulate concentrations of extracellular monoamine neurotransmitters. Three major classes of MATs are responsible for the reuptake of their associated amine neurotransmitters. MATs are located just outside the synaptic cleft (peri-synaptically), transporting monoamine transmitter overflow from the synaptic cleft back to the cytoplasm of the pre-synaptic neuron. MAT regulation generally occurs through protein phosphorylation and posttranslational modification. Due to their significance in neuronal signaling, MATs are commonly associated with drugs used to treat mental disorders as well as recreational drugs. Compounds targeting MATs range from medications such as the wide variety of tricyclic antidepressants, selective serotonin reuptake inhibitors such as fluoxetine (Prozac) to stimulant medications such as methylphenidate (Ritalin) and amphetamine in its many forms and derivatives methamphetamine (Desoxyn) and lisdexamfetamine (Vyvanse). Furthermore, drugs such as MDMA and natural alkaloids such as cocaine exert their effects in part by their interaction with MATs, by blocking the transporters from mopping up dopamine, serotonin, and other neurotransmitters from the synapse.

<i>para</i>-Methoxyamphetamine Chemical compound

para-Methoxyamphetamine (PMA), also known as 4-methoxyamphetamine (4-MA), is a designer drug of the amphetamine class with serotonergic effects. Unlike other similar drugs of this family, PMA does not produce stimulant, euphoriant, or entactogen effects, and behaves more like an antidepressant in comparison, though it does have some psychedelic properties.

<span class="mw-page-title-main">Isocarboxazid</span> Antidepressant

Isocarboxazid is a non-selective, irreversible monoamine oxidase inhibitor (MAOI) of the hydrazine class used as an antidepressant. Along with phenelzine and tranylcypromine, it is one of only three classical MAOIs still available for clinical use in the treatment of psychiatric disorders in the United States, though it is not as commonly employed in comparison to the others.

<span class="mw-page-title-main">Trace amine</span>

Trace amines are an endogenous group of trace amine-associated receptor 1 (TAAR1) agonists – and hence, monoaminergic neuromodulators – that are structurally and metabolically related to classical monoamine neurotransmitters. Compared to the classical monoamines, they are present in trace concentrations. They are distributed heterogeneously throughout the mammalian brain and peripheral nervous tissues and exhibit high rates of metabolism. Although they can be synthesized within parent monoamine neurotransmitter systems, there is evidence that suggests that some of them may comprise their own independent neurotransmitter systems.

<span class="mw-page-title-main">Tryptoline</span> Chemical compound

Tryptoline, also known as tetrahydro-β-carboline and tetrahydronorharmane, is a natural organic derivative of beta-carboline. It is an alkaloid chemically related to tryptamines. Derivatives of tryptoline have a variety of pharmacological properties and are known collectively as tryptolines.

A serotonin–norepinephrine–dopamine reuptake inhibitor (SNDRI), also known as a triple reuptake inhibitor (TRI), is a type of drug that acts as a combined reuptake inhibitor of the monoamine neurotransmitters serotonin, norepinephrine, and dopamine. It does this by concomitantly inhibiting the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT), respectively. Inhibition of the reuptake of these neurotransmitters increases their extracellular concentrations and, therefore, results in an increase in serotonergic, adrenergic, and dopaminergic neurotransmission.

<i>N</i>-Methylphenethylamine Chemical compound

N-Methylphenethylamine (NMPEA) is a naturally occurring trace amine neuromodulator in humans that is derived from the trace amine, phenethylamine (PEA). It has been detected in human urine and is produced by phenylethanolamine N-methyltransferase with phenethylamine as a substrate, which significantly increases PEA's effects. PEA breaks down into Phenylacetaldehyde which is further broken down into Phenylacetic acid by Monoamine oxidase. When this is inhibited by Monoamine oxidase inhibitors, it allows more of the PEA to be metabolized into nymphetamine (NMPEA) and not wasted on the weaker inactive metabolites.

<span class="mw-page-title-main">Monoamine oxidase B</span> Protein-coding gene in the species Homo sapiens

Monoamine oxidase B, also known as MAOB, is an enzyme that in humans is encoded by the MAOB gene.

<span class="mw-page-title-main">TAAR1</span> Protein-coding gene in the species Homo sapiens

Trace amine-associated receptor 1 (TAAR1) is a trace amine-associated receptor (TAAR) protein that in humans is encoded by the TAAR1 gene. TAAR1 is an intracellular amine-activated Gs-coupled and Gq-coupled G protein-coupled receptor (GPCR) that is primarily expressed in several peripheral organs and cells, astrocytes, and in the intracellular milieu within the presynaptic plasma membrane of monoamine neurons in the central nervous system (CNS). TAAR1 was discovered in 2001 by two independent groups of investigators, Borowski et al. and Bunzow et al. TAAR1 is one of six functional human trace amine-associated receptors, which are so named for their ability to bind endogenous amines that occur in tissues at trace concentrations. TAAR1 plays a significant role in regulating neurotransmission in dopamine, norepinephrine, and serotonin neurons in the CNS; it also affects immune system and neuroimmune system function through different mechanisms.

<span class="mw-page-title-main">Reuptake inhibitor</span> Type of drug

A reuptake inhibitor (RI) is a type of drug known as a reuptake modulator that inhibits the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron. This leads to an increase in extracellular concentrations of the neurotransmitter and an increase in neurotransmission. Various drugs exert their psychological and physiological effects through reuptake inhibition, including many antidepressants and psychostimulants.

<span class="mw-page-title-main">Meprylcaine</span> Chemical compound

Meprylcaine is a local anesthetic with stimulant properties that is structurally related to dimethocaine.

<span class="mw-page-title-main">Pheniprazine</span> Chemical compound

Pheniprazine is an irreversible and nonselective monoamine oxidase inhibitor (MAOI) of the hydrazine chemical class that was used as an antidepressant in the 1960s. It was also used in the treatment of angina pectoris and schizophrenia. Pheniprazine has been largely discontinued due to toxicity concerns such as jaundice, amblyopia, and optic neuritis.

A serotonin releasing agent (SRA) is a type of drug that induces the release of serotonin into the neuronal synaptic cleft. A selective serotonin releasing agent (SSRA) is an SRA with less significant or no efficacy in producing neurotransmitter efflux at other types of monoamine neurons.

<span class="mw-page-title-main">6-Nitroquipazine</span> Chemical compound

6-Nitroquipazine is a potent and selective serotonin reuptake inhibitor used in scientific research.

<span class="mw-page-title-main">3,4-Dichloroamphetamine</span> Chemical compound

3,4-Dichloroamphetamine (DCA), is an amphetamine derived drug invented by Eli Lilly in the 1960s, which has a number of pharmacological actions. It acts as a highly potent and selective serotonin releasing agent (SSRA) and binds to the serotonin transporter with high affinity, but also acts as a selective serotonergic neurotoxin in a similar manner to the related para-chloroamphetamine, though with slightly lower potency. It is also a monoamine oxidase inhibitor (MAOI), as well as a very potent inhibitor of the enzyme phenylethanolamine N-methyl transferase which normally functions to transform noradrenaline into adrenaline in the body.

<span class="mw-page-title-main">Mofegiline</span> Chemical compound

Mofegiline (MDL-72,974) is a selective, irreversible inhibitor of monoamine oxidase B (MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) which was under investigation for the treatment of Parkinson's disease and Alzheimer's disease, but was never marketed.

<span class="mw-page-title-main">Salomon Z. Langer</span>

Salomon Zender Langer is an Argentinian pharmacologist whose family had fled from Poland to Argentina in the early 1930s and were thus saved from the Holocaust during the Second World War.

References

  1. 1 2 Ask AL, Högberg K, Schmidt L, Kiessling H, Ross SB (April 1982). "(+)-4-Dimethylamino-2,alpha-dimethylphenethylamine (FLA 336(+)), a selective inhibitor of the A form of monoamine oxidase in the rat brain". Biochemical Pharmacology . 31 (7): 1401–6. doi:10.1016/0006-2952(82)90035-1. PMID   7092929.
  2. 1 2 Fowler CJ, Eriksson M, Thorell G, Magnusson O (October 1984). "Stereoselective inhibition of monoamine oxidase and semicarbazide-sensitive amine oxidase by 4-dimethylamino-2,alpha-dimethylphenethylamine (FLA 336)". Naunyn-Schmiedeberg's Archives of Pharmacology. 327 (4): 279–84. doi:10.1007/bf00506237. PMID   6514012. S2CID   25342831.
  3. Morikawa F, Ueda T, Arai Y, Kinemuchi H (1986). "Inhibition of monoamine oxidase A-form and semicarbazide-sensitive amine oxidase by selective and reversible monoamine oxidase-A inhibitors, amiflamine and FLA 788(+)". Pharmacology. 32 (1): 38–45. doi:10.1159/000138150. PMID   3945672.
  4. Ask AL, Fagervall I, Huang RB, Ross SB (June 1989). "Release of 3H-5-hydroxytryptamine by amiflamine and related phenylalkylamines from rat occipital cortex slices". Naunyn-Schmiedeberg's Archives of Pharmacology. 339 (6): 684–9. doi:10.1007/bf00168662. PMID   2770890. S2CID   21817180.
  5. 1 2 Fowler CJ, Magnusson O, Ross SB (1984). "Intra- and extraneuronal monoamine oxidase". Blood Vessels. 21 (3): 126–31. doi:10.1159/000158505. PMID   6202347.
  6. 1 2 3 Ask AL, Fagervall I, Ross SB (September 1983). "Selective inhibition of monoamine oxidase in monoaminergic neurons in the rat brain". Naunyn-Schmiedeberg's Archives of Pharmacology. 324 (2): 79–87. doi:10.1007/BF00497011. PMID   6646243. S2CID   403633.