Acetylserotonin O-methyltransferase

Last updated
acetylserotonin O-methyltransferase
Identifiers
EC no. 2.1.1.4
CAS no. 9029-77-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
ASMT
ASMT protein.png
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases ASMT , ASMTY, HIOMT, HIOMTY, acetylserotonin O-methyltransferase
External IDs OMIM: 402500, 300015 HomoloGene: 48261 GeneCards: ASMT
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004043
NM_001171038
NM_001171039

n/a

RefSeq (protein)

NP_001164509
NP_001164510
NP_004034

n/a

Location (UCSC) Chr X: 1.62 – 1.64 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

N-Acetylserotonin O-methyltransferase, also known as ASMT, is an enzyme which catalyzes the final reaction in melatonin biosynthesis: converting Normelatonin to melatonin. This reaction is embedded in the more general tryptophan metabolism pathway. The enzyme also catalyzes a second reaction in tryptophan metabolism: the conversion of 5-hydroxy-indoleacetate to 5-methoxy-indoleacetate. The other enzyme which catalyzes this reaction is n-acetylserotonin-o-methyltransferase-like-protein. [3]

Contents

In humans the ASMT enzyme is encoded by the pseudoautosomal ASMT gene. A copy exists near the endcaps of the short arms of both the X chromosome and the Y chromosome. [4] [5]

Structure and gene location

N-Acetylserotonin O-methyltransferase is an enzyme that is coded for by genes located on the pseudoautosomal region of the X and Y chromosome, and is most abundantly found in the pineal gland and retina of humans. [6] The structure of N- Acetylserotonin O-methyltransferase has been determined by X-ray diffraction. [7]

Class of enzyme and function

N-Acetylserotonin O-methyltransferase can be classified under three types of enzyme functional groups: transferases, one-carbon group transferrers, and methyltransferases. [8]

It catalyzes two reactions in the tryptophan metabolism pathway, and both can be traced back to serotonin. Serotonin has many fates in this pathway, and N- Acetylserotonin O-methyltransferase catalyzes reactions in two of these fates. The enzyme has been studied most for its catalysis of the final step of the pathway from serotonin to melatonin, but it also catalyzes one of the reactions in the many step process of serotonin → 5-Methoxy-indolacetate.

Synonyms

Synonyms of N- Acetylserotonin O-methyltransferase are Hydroxyindole O-methyltransferase (HIOMT), Acetylserotonin O-methyltransferase (ASMT), Acetylserotonin N-methyltransferase, Acetylserotonin methyltransferase (Y chromosome). [8] The most commonly used synonym is Hydroxyindole O-methyltransferase (HIOMT).

Organisms

N- Acetylserotonin O-methyltransferase is found in both prokaryotes and eukaryotes. It is found in the bacteria Rhodopirellula baltica and Chromobacterium violaceum . It is also found in the following eukaryotes: Gallus gallus (chicken), Bos taurus (cow), Homo sapiens (human), Macaca mulatta (rhesus monkey), and Rattus norvegicus (rat). [8]

Amino acid sequences

Bos taurus (cattle) has 350 amino acids [8] and the amino acid sequence is:

MCSQEGEGYSLLKEYANAFMVSQVLFAACELGVFELLAEALEPLDSAAVSSHLGSSPGD RAATEHLCVPEAAASRREGRKSCVCKHGARQHLPGERQPQVPAGHAAVRGQDRLRLLAP PGEAVREGRNQYLKAFGIPSEELFSAIYRSEDERLQFMQGLQDVWRLEGATVLAAFDLS PFPLICDLGGGSGALAKACVSLYPGCRAIVFDIPGVVQIAKRHFSASEDERISFHEGDF FKDALPEADLYILARVLHDWTDAKCSHLLQRVYRACRTGGGILVIESLLDTDGRGPLTT LLYSLNMLVQTEGRERTPGRSTARSVGPAASETCGDGGRGEPTMLSWPGNQACSV

For Homo sapiens (human) with 373 amino acids [8] the sequence is:

MGSSEDQAYRLLNDYANGFMVSQVLFAACELGVFDLLAEAPGPLDVAAVAAGVRASAHG TELLLDICVSLKLLKVETRGGKAFYRNTELSSDYLTTVSPTSQCSMLKYMGRTSYRCWG HLADAVREGRNQYLETFGVPAEELFTAIYRSEGERLQFMQALQEVWSVNGRSVLTAFDL SVFPLMCDLGGTRIKLETIILSKLSQGQKTKHRVFSLIGGAGALAKECMSLYPGCKITV FDIPEVVWTAKQHFSFQEEEQIDFQEGDFFKDPLPEADLYILARVLHDWADGKCSHLLE RIYHTCKPGGGILVIESLLDEDRRGPLLTQLYSLNMLVQTEGQERTPTHYHMLLSSAGF RDFQFKKTGAIYDAILARK

Alternative splicing

The human HOIMT gene is approximately 35 kb in length and contains 9-10 exons. The gene can be alternatively spliced to form at least three possible isoforms, although each of these isoforms has the same role in the biosynthesis of melatonin. It has also been found that the gene contains multiple promoter regions, an indication that multiple mechanisms of regulation exist. [5]

Expression in immune cells

Recent studies found messenger RNA (mRNA) transcripts of the HOIMT gene in B lymphocytes, T helper lymphocytes, cytoxic T lymphocytes, and natural killer lymphocytes in humans. This finding, in conjunction with research on alternative splicing of the HOIMT hnRNA, suggests that Hydroxyindole O-methyltransferase (synonym for N- Acetylserotonin O-methyltransferase) plays a role in the human immune system, in addition to its endocrine and nervous system functions. In other words, the gene may be expressed in various isoforms in different cells of the body. [9]

Reactions catalyzed

In the tryptophan metabolism pathway, N- Acetylserotonin O-methyltransferase catalyzes two separate reactions. The first reaction shown (Figure 2) is the reaction of N-acetyl-serotonin to N-acetyl-5-methoxy-tryptamine. S-adenosyl-L-methionine is used as a substrate and is converted to S-adenosyl-L-homocysteine. [10] Figure 2: Reaction catalyzed by N- Acetylserotonin O-methyltransferase


Figure 3 is the same reaction as above, but the figure provides a clearer picture of how the reactant proceeds to product using N-Acetylserotonin O-methyltransferase in addition to the substrate. [8]

Figure 3: Role of N- Acetylserotonin O-methyltransferase


The second reaction (Figure 4) catalyzed by N-Acetylserotonin O-methyltransferase in the tryptophan metabolism pathway is: S-Adenosyl-L-methionine + 5-Hydroxyindoleacetate ↔ S-Adenosyl-L-homocysteine + 5-Methoxyindoleacetate. [8]

Figure 4: Second reaction catalyzed by N- Acetylserotonin O-methyltransferase


Figure 5 is a more general scheme of the reaction pathway from serotonin to melatonin. The number 2.1.1.4 refers to the Enzyme Commission Number (EC Number) for N- Acetylserotonin O-methyltransferase. These two steps are embedded in the highly involved tryptophan metabolism pathway. [11]

Figure 5: Pathway serotonin → melatonin


Clinical implications

Tumors

There is evidence of high HIOMT gene expression in pineal parenchymal tumors (PPTs). This finding has led to the study of varying gene expression as a diagnostic marker for such tumors. Abnormally high levels of HIOMT in these glands could serve as an indication of the existence of PPTs in the brain. [12]

Psychiatric disorders

Melatonin levels are used as a trait marker for mood disorders, meaning that abnormal levels of melatonin can be used in conjunction with other diagnostic criteria to determine whether a mood disorder (e.g. Seasonal affective disorder, bipolar disorder, or major depressive disorder) exists. Melatonin levels can also be used as a state marker, contributing to conclusions on the severity of a patient's illness at a given point in time. Because studies have shown a direct correlation between the amount of hydroxyindole-O-methyltransferase in the pineal gland and the melatonin level, additional knowledge of HIOMT could provide valuable insight on the nature and onset of these impairing disorders. [13]

Developmental disorders

Subjects with autism were found to have significantly lower levels of melatonin and acetylserotonin O-methyltransferase (ASMT) than controls. [14]

Linkage analysis

High frequency polymorphism exists on the PAR region of the sex chromosomes, where the HIOMT gene is located. Linkage analysis of a diseased locus with high frequency polymorphism of this region could lead to vital information about the role of this gene in genetic disorders. [15]

Additional research

HIOMT as the limiting reagent in the melatonin biosynthetic pathway

There has been some controversy over the regulatory power of hydroxyindole-O-methyltransferase in the production of melatonin. In 2001, it was argued that another enzyme in the pathway, N-acetyl transferase (NAT) was the limiting reagent in the production of melatonin. [16] Recent findings, however, have suggested that HIOMT, not NAT, is the limiting reagent, and a direct correlation between HIOMT expression and melatonin levels has been shown to exist. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Tryptophan</span> Chemical compound

Tryptophan is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent. Tryptophan is also a precursor to the neurotransmitter serotonin, the hormone melatonin, and vitamin B3. It is encoded by the codon UGG.

Methylation, in the chemical sciences, is the addition of a methyl group on a substrate, or the substitution of an atom by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These terms are commonly used in chemistry, biochemistry, soil science, and biology.

<span class="mw-page-title-main">Melatonin</span> Hormone released by the pineal gland

Melatonin is a natural compound, specifically an indoleamine, produced by and found in different organisms including bacteria and eukaryotes. It was discovered by Aaron B. Lerner and colleagues in 1958 as a substance of the pineal gland from cow that could induce skin lightening in common frogs. It was subsequently discovered as a hormone released in the brain at night which controls the sleep–wake cycle in vertebrates.

A biogenic amine is a biogenic substance with one or more amine groups. They are basic nitrogenous compounds formed mainly by decarboxylation of amino acids or by amination and transamination of aldehydes and ketones. Biogenic amines are organic bases with low molecular weight and are synthesized by microbial, vegetable and animal metabolisms. In food and beverages they are formed by the enzymes of raw material or are generated by microbial decarboxylation of amino acids.

<span class="mw-page-title-main">Pinealocyte</span> Main cells contained in the pineal gland

Pinealocytes are the main cells contained in the pineal gland, located behind the third ventricle and between the two hemispheres of the brain. The primary function of the pinealocytes is the secretion of the hormone melatonin, important in the regulation of circadian rhythms. In humans, the suprachiasmatic nucleus of the hypothalamus communicates the message of darkness to the pinealocytes, and as a result, controls the day and night cycle. It has been suggested that pinealocytes are derived from photoreceptor cells. Research has also shown the decline in the number of pinealocytes by way of apoptosis as the age of the organism increases. There are two different types of pinealocytes, type I and type II, which have been classified based on certain properties including shape, presence or absence of infolding of the nuclear envelope, and composition of the cytoplasm.

Aromatic <small>L</small>-amino acid decarboxylase Class of enzymes

Aromatic L-amino acid decarboxylase, also known as DOPA decarboxylase (DDC), tryptophan decarboxylase, and 5-hydroxytryptophan decarboxylase, is a lyase enzyme, located in region 7p12.2-p12.1.

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

<span class="mw-page-title-main">Tryptophan hydroxylase</span> Class of enzymes

Tryptophan hydroxylase (TPH) is an enzyme (EC 1.14.16.4) involved in the synthesis of the monoamine neurotransmitter serotonin. Tyrosine hydroxylase, phenylalanine hydroxylase, and tryptophan hydroxylase together constitute the family of biopterin-dependent aromatic amino acid hydroxylases. TPH catalyzes the following chemical reaction

Aralkylamine <i>N</i>-acetyltransferase Class of enzymes

Aralkylamine N-acetyltransferase (AANAT), also known as arylalkylamine N-acetyltransferase or serotonin N-acetyltransferase (SNAT), is an enzyme that is involved in the day/night rhythmic production of melatonin, by modification of serotonin. It is in humans encoded by the ~2.5 kb AANAT gene containing four exons, located on chromosome 17q25. The gene is translated into a 23 kDa large enzyme. It is well conserved through evolution and the human form of the protein is 80 percent identical to sheep and rat AANAT. It is an acetyl-CoA-dependent enzyme of the GCN5-related family of N-acetyltransferases (GNATs). It may contribute to multifactorial genetic diseases such as altered behavior in sleep/wake cycle and research is on-going with the aim of developing drugs that regulate AANAT function.

<i>N</i>-Acetylserotonin Chemical compound

N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects.

<span class="mw-page-title-main">Kynurenine 3-monooxygenase</span> Enzyme

In enzymology, a kynurenine 3-monooxygenase (EC 1.14.13.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Tryptophan 2,3-dioxygenase</span> Mammalian protein found in Homo sapiens

In enzymology, tryptophan 2,3-dioxygenase (EC 1.13.11.11) is a heme enzyme that catalyzes the oxidation of L-tryptophan (L-Trp) to N-formyl-L-kynurenine, as the first and rate-limiting step of the kynurenine pathway.

<span class="mw-page-title-main">TPH2</span> Protein-coding gene in the species Homo sapiens

Tryptophan hydroxylase 2 (TPH2) is an isozyme of tryptophan hydroxylase found in vertebrates. In humans, TPH2 is primarily expressed in the serotonergic neurons of the brain, with the highest expression in the raphe nucleus of the midbrain. Until the discovery of TPH2 in 2003, serotonin levels in the central nervous system were believed to be regulated by serotonin synthesis in peripheral tissues, in which tryptophan hydroxylase is the dominant form.

<span class="mw-page-title-main">PCMT1</span> Protein-coding gene in the species Homo sapiens

Protein-L-isoaspartate(D-aspartate) O-methyltransferase is an enzyme that in humans is encoded by the PCMT1 gene.

<span class="mw-page-title-main">TRMU</span> Protein-coding gene in the species Homo sapiens

Mitochondrial tRNA-specific 2-thiouridylase 1 is an enzyme that in humans is encoded by the TRMU gene.

<span class="mw-page-title-main">N-acetylserotonin O-methyltransferase-like protein</span> Protein-coding gene in the species Homo sapiens

N-acetylserotonin O-methyltransferase-like protein is an enzyme that in humans is encoded by the ASMTL gene.

<span class="mw-page-title-main">TPH1</span> Protein-coding gene in the species Homo sapiens

Tryptophan hydroxylase 1 (TPH1) is an isoenzyme of tryptophan hydroxylase which in humans is encoded by the TPH1 gene.

<span class="mw-page-title-main">SHOX2</span> Protein-coding gene in the species Homo sapiens

Short-stature homeobox 2, also known as homeobox protein Og12X or paired-related homeobox protein SHOT, is a protein that in humans is encoded by the SHOX2 gene.

Radical SAMenzymes is a superfamily of enzymes that use a [4Fe-4S]+ cluster to reductively cleave S-adenosyl-L-methionine (SAM) to generate a radical, usually a 5′-deoxyadenosyl radical (5'-dAdo), as a critical intermediate. These enzymes utilize this radical intermediate to perform diverse transformations, often to functionalize unactivated C-H bonds. Radical SAM enzymes are involved in cofactor biosynthesis, enzyme activation, peptide modification, post-transcriptional and post-translational modifications, metalloprotein cluster formation, tRNA modification, lipid metabolism, biosynthesis of antibiotics and natural products etc. The vast majority of known radical SAM enzymes belong to the radical SAM superfamily, and have a cysteine-rich motif that matches or resembles CxxxCxxC. Radical SAM enzymes comprise the largest superfamily of metal-containing enzymes.

<small>L</small>-Tryptophan decarboxylase Enzyme

L-Tryptophan decarboxylase is an enzyme distinguished by the substrate L-tryptophan.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000196433 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Kanehisa M.; Goto S.; Hattori M.; Aoki-Kinoshita K.F.; Itoh M.; Kawashima S.; Katayama T.; Araki M.; Hirakawa M.; et al. (2006). "From genomics to chemical genomics: new developments in KEGG". Nucleic Acids Res. 34 (90001): D354–357. doi:10.1093/nar/gkj102. PMC   1347464 . PMID   16381885. [See also comments in Thomson's website]
  4. Donohue SJ, Roseboom PH, Illnerova H, Weller JL, Klein DC (October 1993). "Human hydroxyindole-O-methyltransferase: presence of LINE-1 fragment in a cDNA clone and pineal mRNA". DNA Cell Biol. 12 (8): 715–27. doi:10.1089/dna.1993.12.715. PMID   8397829.
  5. 1 2 Rodriguez IR, Mazuruk K, Schoen TJ, Chader GJ (December 1994). "Structural analysis of the human hydroxyindole-O-methyltransferase gene. Presence of two distinct promoters". J. Biol. Chem. 269 (50): 31969–77. doi: 10.1016/S0021-9258(18)31790-3 . PMID   7989373.
  6. Online Mendelian Inheritance in Man (OMIM): x-chromosomal ASMT - 300015
  7. Botros HG, Legrand P, Pagan C, Bondet V, Weber P, Ben-Abdallah M, et al. (January 2013). "Crystal structure and functional mapping of human ASMT, the last enzyme of the melatonin synthesis pathway". Journal of Pineal Research. 54 (1): 46–57. doi:10.1111/j.1600-079x.2012.01020.x. PMID   22775292. S2CID   205836404.
  8. 1 2 3 4 5 6 7 Enzyme 2.1.1.4 at KEGG Pathway Database.
  9. Pozo D, García-Mauriño S, Guerrero JM, Calvo JR (August 2004). "mRNA expression of nuclear receptor RZR/RORalpha, melatonin membrane receptor MT, and hydroxindole-O-methyltransferase in different populations of human immune cells". J. Pineal Res. 37 (1): 48–54. doi:10.1111/j.1600-079X.2004.00135.x. PMID   15230868. S2CID   22197004.
  10. Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang P, Karp PD (January 2006). "MetaCyc: a multiorganism database of metabolic pathways and enzymes" (PDF). Nucleic Acids Res. 34 (Database issue): D511–6. doi:10.1093/nar/gkj128. PMC   1347490 . PMID   16381923.
  11. Maltsev N, Glass E, Sulakhe D, Rodriguez A, Syed MH, Bompada T, Zhang Y, D'Souza M (January 2006). "PUMA2--grid-based high-throughput analysis of genomes and metabolic pathways". Nucleic Acids Res. 34 (Database issue): D369–72. doi:10.1093/nar/gkj095. PMC   1347457 . PMID   16381888.
  12. Fèvre-Montange M, Champier J, Szathmari A, Wierinckx A, Mottolese C, Guyotat J, Figarella-Branger D, Jouvet A, Lachuer J (July 2006). "Microarray analysis reveals differential gene expression patterns in tumors of the pineal region". J. Neuropathol. Exp. Neurol. 65 (7): 675–84. doi: 10.1097/01.jnen.0000225907.90052.e3 . PMID   16825954.
  13. Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal SR, Parry B, Cardinali DP (2006). "Melatonin in mood disorders". World J. Biol. Psychiatry. 7 (3): 138–51. doi:10.1080/15622970600571822. PMID   16861139. S2CID   21794734.
  14. "Genetic studies probe sleep hormone's role in autism". 13 November 2011.
  15. Yi H, Donohue SJ, Klein DC, McBride OW (February 1993). "Localization of the hydroxyindole-O-methyltransferase gene to the pseudoautosomal region: implications for mapping of psychiatric disorders". Hum. Mol. Genet. 2 (2): 127–31. doi:10.1093/hmg/2.2.127. PMID   8098975.
  16. Djeridane Y, Touitou Y (April 2001). "Chronic diazepam administration differentially affects melatonin synthesis in rat pineal and Harderian glands". Psychopharmacology. 154 (4): 403–7. doi:10.1007/s002130000631. PMID   11349394. S2CID   22918068.
  17. Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z (2007). "Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions" (PDF). Acta Biochim. Pol. 54 (1): 1–9. doi: 10.18388/abp.2007_3264 . PMID   17351668.

Further reading