Luzindole

Last updated
Luzindole
Luzindole.svg
Clinical data
ATC code
  • None
Legal status
Legal status
  • In general: non-regulated
Identifiers
  • N-[2-(2-benzyl-1H-indol-3-yl)ethyl]acetamide
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H20N2O
Molar mass 292.382 g·mol−1
3D model (JSmol)
  • O=C(NCCc2c1ccccc1[nH]c2Cc3ccccc3)C
  • InChI=1S/C19H20N2O/c1-14(22)20-12-11-17-16-9-5-6-10-18(16)21-19(17)13-15-7-3-2-4-8-15/h2-10,21H,11-13H2,1H3,(H,20,22)
  • Key:WVVXBPKOIZGVNS-UHFFFAOYSA-N

Luzindole (N-0774; N-acetyl-2-benzyltryptamine), is a drug used in scientific research to study the role of melatonin in the body. Luzindole acts as a selective melatonin receptor antagonist, [1] with approximately 11- to 25-fold greater affinity for the MT2 over the MT1 receptor. [2] [3] In animal studies, it has been observed to disrupt the circadian rhythm as well as produce antidepressant effects. [2] [4]

Synthesis

Although the "hydrogen bomb" method was reported as 54% yield by Dubococvich, Boehringer Sohn achieved 96% for this step. The difference is that B.I. conducted their hydrogenation under normal pressure at 50°C for 5 hours, whereas Dubocovich conducted theirs at 100 lbs/in2 hydrogen heated to 35°C. This proves that the hydrogenation step proceeds favorably under milder conditions.

Patents: Luzindole synthesis.svg
Patents:

The Pictet–Spengler reaction between tryptamine [61-54-1] (1) and benzaldehyde gives 1-Phenyl-tetrahydrocarboline [3790-45-2] (2). Catalytic hydrogenation leads to 2-Benzyltryptamine [22294-23-1] (3). Acylation with acetic anhydride only gave 21% yield of Luzindole (4).

Luzindole synthesis 2: Luzindole synthesis 2.svg
Luzindole synthesis 2:

2-iodoaniline [615-43-0] (1) Propargylbenzene [10147-11-2] (2) 2-(3-phenylprop-1-ynyl)aniline, PC85868179 (3) 2-benzylindole [3377-72-8] (4) 1-Dimethylamino-2-nitroethylene [1190-92-7] (5) (6)

One pot Luzindole synthesis: [9]

Related Research Articles

<span class="mw-page-title-main">Melatonin</span> Hormone released by the pineal gland

Melatonin, an indoleamine, is a natural compound produced by various organisms, including bacteria and eukaryotes. Its discovery in 1958 by Aaron B. Lerner and colleagues stemmed from the isolation of a substance from the pineal gland of cows that could induce skin lightening in common frogs. This compound was later identified as a hormone secreted in the brain during the night, playing a crucial role in regulating the sleep-wake cycle, also known as the circadian rhythm, in vertebrates.

<span class="mw-page-title-main">Agomelatine</span> Atypical antidepressant classified primarily as a melatonin receptor agonist

Agomelatine, sold under the brand names Valdoxan and Thymanax, among others, is an atypical antidepressant most commonly used to treat major depressive disorder and generalized anxiety disorder. One review found that it is as effective as other antidepressants with similar discontinuation rates overall but fewer discontinuations due to side effects. Another review also found it was similarly effective to many other antidepressants.

<span class="mw-page-title-main">Ramelteon</span> Hypnotic medication

Ramelteon, sold under the brand name Rozerem among others, is a melatonin agonist medication which is used in the treatment of insomnia. It is indicated specifically for the treatment of insomnia characterized by difficulties with sleep onset. It reduces the time taken to fall asleep, but the degree of clinical benefit is small. The medication is approved for long-term use. Ramelteon is taken by mouth.

Melatonin receptors are G protein-coupled receptors (GPCR) which bind melatonin. Three types of melatonin receptors have been cloned. The MT1 (or Mel1A or MTNR1A) and MT2 (or Mel1B or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype MT3 (or Mel1C or MTNR1C) has been identified in amphibia and birds. The receptors are crucial in the signal cascade of melatonin. In the field of chronobiology, melatonin has been found to be a key player in the synchrony of biological clocks. Melatonin secretion by the pineal gland has circadian rhythmicity regulated by the suprachiasmatic nucleus (SCN) found in the brain. The SCN functions as the timing regulator for melatonin; melatonin then follows a feedback loop to decrease SCN neuronal firing. The receptors MT1 and MT2 control this process. Melatonin receptors are found throughout the body in places such as the brain, the retina of the eye, the cardiovascular system, the liver and gallbladder, the colon, the skin, the kidneys, and many others. In 2019, X-ray crystal and cryo-EM structures of MT1 and MT2 were reported.

<span class="mw-page-title-main">Fenobam</span> Chemical compound

Fenobam is an imidazole derivative developed by McNeil Laboratories in the late 1970s as a novel anxiolytic drug with an at-the-time-unidentified molecular target in the brain. Subsequently, it was determined that fenobam acts as a potent and selective negative allosteric modulator of the metabotropic glutamate receptor subtype mGluR5, and it has been used as a lead compound for the development of a range of newer mGluR5 antagonists.

δ-opioid receptor Opioid receptor

The δ-opioid receptor, also known as delta opioid receptor or simply delta receptor, abbreviated DOR or DOP, is an inhibitory 7-transmembrane G-protein coupled receptor coupled to the G protein Gi/G0 and has enkephalins as its endogenous ligands. The regions of the brain where the δ-opioid receptor is largely expressed vary from species model to species model. In humans, the δ-opioid receptor is most heavily expressed in the basal ganglia and neocortical regions of the brain.

<i>N</i>-Acetylserotonin Chemical compound

N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, the 5-HT2B receptor is Gq/G11-protein coupled, leading to downstream activation of phospholipase C.

<span class="mw-page-title-main">Melatonin receptor 1A</span> Protein-coding gene in the species Homo sapiens

Melatonin receptor type 1A is a protein that in humans is encoded by the MTNR1A gene.

Dopamine receptor D<sub>3</sub> Subtype of Dopamine Receptor

Dopamine receptor D3 is a protein that in humans is encoded by the DRD3 gene.

<span class="mw-page-title-main">Melatonin receptor 1B</span> Protein-coding gene in the species Homo sapiens

Melatonin receptor 1B, also known as MTNR1B, is a protein that in humans is encoded by the MTNR1B gene.

<span class="mw-page-title-main">5'-Guanidinonaltrindole</span> Chemical compound

5'-Guanidinonaltrindole (5'-GNTI) is an opioid antagonist used in scientific research which is highly selective for the κ opioid receptor. It is 5x more potent and 500 times more selective than the commonly used κ-opioid antagonist norbinaltorphimine. It has a slow onset and long duration of action, and produces antidepressant effects in animal studies. It also increases allodynia by interfering with the action of the κ-opioid peptide dynorphin.

<span class="mw-page-title-main">2-Methyl-6-(phenylethynyl)pyridine</span> Chemical compound

2-Methyl-6-(phenylethynyl)pyridine (MPEP) is a research drug which was one of the first compounds found to act as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. After being originally patented as a liquid crystal for LCDs, it was developed by the pharmaceutical company Novartis in the late 1990s. It was found to produce neuroprotective effects following acute brain injury in animal studies, although it was unclear whether these results were purely from mGluR5 blockade as it also acts as a weak NMDA antagonist, and as a positive allosteric modulator of another subtype mGlu4, and there is also evidence for a functional interaction between mGluR5 and NMDA receptors in the same populations of neurons. It was also shown to produce antidepressant and anxiolytic effects in animals, and to reduce the effects of morphine withdrawal, most likely due to direct interaction between mGluR5 and the μ-opioid receptor.

<span class="mw-page-title-main">Melatonin receptor agonist</span>

Melatonin receptor agonists are analogues of melatonin that bind to and activate the melatonin receptor. Agonists of the melatonin receptor have a number of therapeutic applications including treatment of sleep disorders and depression. The discovery and development of melatonin receptor agonists was motivated by the need for more potent analogues than melatonin, with better pharmacokinetics and longer half-lives. Melatonin receptor agonists were developed with the melatonin structure as a model.

<span class="mw-page-title-main">MGS-0039</span> Chemical compound

MGS-0039 is a drug that is used in neuroscientific research, which acts as a potent and selective antagonist for group II of the metabotropic glutamate receptors (mGluR2/3). It produces antidepressant and anxiolytic effects in animal studies, and has been shown to boost release of dopamine and serotonin in specific brain areas. Research has suggested this may occur through a similar mechanism as that suggested for the similarly glutamatergic drug ketamine.

<span class="mw-page-title-main">Aticaprant</span> Investigational antidepressant compound

Aticaprant, also known by its developmental codes JNJ-67953964, CERC-501, and LY-2456302, is a κ-opioid receptor (KOR) antagonist which is under development for the treatment of major depressive disorder. A regulatory application for approval of the medication is expected to be submitted by 2025. Aticaprant is taken by mouth.

<span class="mw-page-title-main">TIK-301</span> Chemical compound

TIK-301 (LY-156735) is an agonist for the melatonin receptors MT1 and MT2 that is under development for the treatment of insomnia and other sleep disorders. Its agonist action on MT1 and MT2 receptors in the suprachiasmatic nucleus in the brain enables its action as a chronobiotic. It is in the same class of melatonin receptor agonists as ramelteon and tasimelteon.

Margarita L. Dubocovich, Ph.D., FACNP, FASPET is an Argentine neuropharmacologist currently a SUNY Distinguished Professor at University of Buffalo, State University of New York.

<span class="mw-page-title-main">Amesergide</span> Chemical compound

Amesergide is a serotonin receptor antagonist of the ergoline and lysergamide families related to methysergide which was under development by Eli Lilly and Company for the treatment of a variety of conditions including depression, anxiety, schizophrenia, male sexual dysfunction, migraine, and thrombosis but was never marketed. It reached phase II clinical trials for the treatment of depression, erectile dysfunction, and premature ejaculation prior to the discontinuation of its development.

<span class="mw-page-title-main">Melatonin as a medication and supplement</span> Supplement and medication used to treat sleep disorders

Melatonin is a dietary supplement and medication as well as naturally occurring hormone. As a hormone, melatonin is released by the pineal gland and is involved in sleep–wake cycles. As a supplement, it is often used for the attempted short-term treatment of disrupted sleep patterns, such as from jet lag or shift work, and is typically taken orally. There is evidence of its benefit for this use, however, it is not strong. A 2017 review found that sleep onset occurred six minutes faster with use, but found no change in total time asleep.

References

  1. Dubocovich ML (September 1988). "Luzindole (N-0774): a novel melatonin receptor antagonist". The Journal of Pharmacology and Experimental Therapeutics. 246 (3): 902–10. PMID   2843633.
  2. 1 2 Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (September 1998). "Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms". The FASEB Journal. 12 (12): 1211–20. doi: 10.1096/fasebj.12.12.1211 . PMID   9737724. S2CID   566199.
  3. Browning C, Beresford I, Fraser N, Giles H (March 2000). "Pharmacological characterization of human recombinant melatonin mt(1) and MT(2) receptors". British Journal of Pharmacology . 129 (5): 877–86. doi:10.1038/sj.bjp.0703130. PMC   1571913 . PMID   10696085.
  4. Dubocovich ML, Mogilnicka E, Areso PM (July 1990). "Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test". European Journal of Pharmacology. 182 (2): 313–25. doi:10.1016/0014-2999(90)90290-M. PMID   2168835.
  5. Margarita L. Dubocovich, et al. WO1989001472A1 ().
  6. Margarita L. Dubocovich, et al., U.S. patent 5,283,343 (1994 to Discovery Therapeutics Inc).
  7. Schroeder Dr Hans-D, et al. DE1445516 (1968 to CH Boehringer Sohn AG and Co KG).
  8. Tsotinis, Andrew; Afroudakis, Pandelis (2008). "Melatonin Receptor Antagonist Luzindole: A Facile New Synthesis". Letters in Organic Chemistry. 5 (6): 507–509. doi:10.2174/157017808785740561. ISSN 1570-1786.
  9. Righi, Marika; Topi, Francesca; Bartolucci, Silvia; Bedini, Annalida; Piersanti, Giovanni; Spadoni, Gilberto (2012). "Synthesis of Tryptamine Derivatives via a Direct, One-Pot Reductive Alkylation of Indoles". The Journal of Organic Chemistry. 77 (14): 6351–6357. doi:10.1021/jo3010028.