Last updated
Clinical data
ATC code
  • None
Legal status
Legal status
  • In general: non-regulated
  • N-[2-(2-benzyl-1H-indol-3-yl)ethyl]acetamide
CAS Number
PubChem CID
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H20N2O
Molar mass 292.382 g·mol−1
3D model (JSmol)
  • O=C(NCCc2c1ccccc1[nH]c2Cc3ccccc3)C
  • InChI=1S/C19H20N2O/c1-14(22)20-12-11-17-16-9-5-6-10-18(16)21-19(17)13-15-7-3-2-4-8-15/h2-10,21H,11-13H2,1H3,(H,20,22)

Luzindole (N-0774), (N-acetyl-2-benzyltryptamine), is a drug used in scientific research to study the role of melatonin in the body. Luzindole acts as a selective melatonin receptor antagonist, [1] with approximately 11- to 25-fold greater affinity for the MT2 over the MT1 receptor. [2] [3] In animal studies, it has been observed to disrupt the circadian rhythm as well as produce antidepressant effects. [2] [4]

Related Research Articles

<span class="mw-page-title-main">Melatonin</span> Hormone released by the pineal gland

Melatonin is a natural product found in plants and animals. It is primarily known in animals as a hormone released by the pineal gland in the brain at night, and has long been associated with control of the sleep–wake cycle.

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Dopamine antagonist</span> Drug which blocks dopamine receptors

A dopamine antagonist, also known as an anti-dopaminergic and a dopamine receptor antagonist (DRA), is a type of drug which blocks dopamine receptors by receptor antagonism. Most antipsychotics are dopamine antagonists, and as such they have found use in treating schizophrenia, bipolar disorder, and stimulant psychosis. Several other dopamine antagonists are antiemetics used in the treatment of nausea and vomiting.

<span class="mw-page-title-main">Agomelatine</span> Atypical antidepressant classified primarily as a melatonin receptor agonist

Agomelatine, sold under the brand names Valdoxan and Thymanax, among others, is an atypical antidepressant most commonly used to treat major depressive disorder and generalized anxiety disorder. One review found that it is as effective as other antidepressants with similar discontinuation rates overall but less discontinuations due to side effects. Another review also found it was similarly effective to many other antidepressants.

<span class="mw-page-title-main">Ramelteon</span> Hypnotic medication

Ramelteon, sold under the brand name Rozerem among others, is a melatonin agonist medication which is used in the treatment of insomnia. It is indicated specifically for the treatment of insomnia characterized by difficulties with sleep onset. It reduces the time taken to fall asleep, but the degree of clinical benefit is small. The medication is approved for long-term use. Ramelteon is taken by mouth.

Melatonin receptors are G protein-coupled receptors (GPCR) which bind melatonin. Three types of melatonin receptors have been cloned. The MT1 (or Mel1A or MTNR1A) and MT2 (or Mel1B or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype MT3 (or Mel1C or MTNR1C) has been identified in amphibia and birds. The receptors are crucial in the signal cascade of melatonin. In the field of chronobiology, melatonin has been found to be a key player in the synchrony of biological clocks. Melatonin secretion by the pineal gland has circadian rhythmicity regulated by the suprachiasmatic nucleus (SCN) found in the brain. The SCN functions as the timing regulator for melatonin; melatonin then follows a feedback loop to decrease SCN neuronal firing. The receptors MT1 and MT2 control this process. Melatonin receptors are found throughout the body in places such as the brain, the retina of the eye, the cardiovascular system, the liver and gallbladder, the colon, the skin, the kidneys, and many others. In 2019, X-ray crystal and cryo-EM structures of MT1 and MT2 were reported.

<i>N</i>-Acetylserotonin Chemical compound

N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects.

<span class="mw-page-title-main">Melatonin receptor 1A</span>

Melatonin receptor type 1A is a protein that in humans is encoded by the MTNR1A gene.

Dopamine receptor D<sub>3</sub> Subtype of the dopamine receptor protein

Dopamine receptor D3 is a protein that in humans is encoded by the DRD3 gene.

5-HT<sub>7</sub> receptor Protein-coding gene in the species Homo sapiens

The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the HTR7 gene, which in humans is transcribed into 3 different splice variants.

<span class="mw-page-title-main">Melatonin receptor 1B</span>

Melatonin receptor 1B, also known as MTNR1B, is a protein that in humans is encoded by the MTNR1B gene.

<span class="mw-page-title-main">2-Methyl-6-(phenylethynyl)pyridine</span> Chemical compound

2-Methyl-6-(phenylethynyl)pyridine (MPEP) is a research drug which was one of the first compounds found to act as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. After being originally patented as a liquid crystal for LCDs, it was developed by the pharmaceutical company Novartis in the late 1990s. It was found to produce neuroprotective effects following acute brain injury in animal studies, although it was unclear whether these results were purely from mGluR5 blockade as it also acts as a weak NMDA antagonist, and as a positive allosteric modulator of another subtype mGlu4, and there is also evidence for a functional interaction between mGluR5 and NMDA receptors in the same populations of neurons. It was also shown to produce antidepressant and anxiolytic effects in animals, and to reduce the effects of morphine withdrawal, most likely due to direct interaction between mGluR5 and the μ-opioid receptor.

<span class="mw-page-title-main">Melatonin receptor agonist</span>

Melatonin receptor agonists are analogues of melatonin that bind to and activate the melatonin receptor. Agonists of the melatonin receptor have a number of therapeutic applications including treatment of sleep disorders and depression. The discovery and development of melatonin receptor agonists was motivated by the need for more potent analogues than melatonin, with better pharmacokinetics and longer half-lives. Melatonin receptor agonists were developed with the melatonin structure as a model.

<span class="mw-page-title-main">Traxoprodil</span> Chemical compound

Traxoprodil is a drug developed by Pfizer which acts as an NMDA antagonist, selective for the NR2B subunit. It has neuroprotective, analgesic, and anti-Parkinsonian effects in animal studies. Traxoprodil has been researched in humans as a potential treatment to lessen the damage to the brain after stroke, but results from clinical trials showed only modest benefit. The drug was found to cause EKG abnormalities and its clinical development was stopped. More recent animal studies have suggested traxoprodil may exhibit rapid-acting antidepressant effects similar to those of ketamine, although there is some evidence for similar psychoactive side effects and abuse potential at higher doses, which might limit clinical acceptance of traxoprodil for this application.

An orexin receptor antagonist, or orexin antagonist, is a drug that inhibits the effect of orexin by acting as a receptor antagonist of one or both of the orexin receptors, OX1 and OX2. Medical applications include treatment of sleep disorders such as insomnia.

<span class="mw-page-title-main">Aticaprant</span> Chemical compound

Aticaprant, also known by its developmental codes JNJ-67953964, CERC-501, and LY-2456302, is a κ-opioid receptor (KOR) antagonist which is under development for the treatment of major depressive disorder. A regulatory application for approval of the medication is expected to be submitted by 2025. Aticaprant is taken by mouth.

<span class="mw-page-title-main">TIK-301</span> Chemical compound

TIK-301 (LY-156735) is an agonist for the melatonin receptors MT1 and MT2 that is under development for the treatment of insomnia and other sleep disorders. Its agonist action on MT1 and MT2 receptors in the suprachiasmatic nucleus in the brain enables its action as a chronobiotic. It is in the same class of melatonin receptor agonists as ramelteon and tasimelteon.

<span class="mw-page-title-main">GR-196,429</span>

GR-196,429 is a melatonin receptor agonist with some selectivity for the MT1 subtype. It was one of the first synthetic melatonin agonists developed and continues to be used in scientific research, though it has never been developed for medical use. Studies in mice have shown GR-196,429 to produce both sleep-promoting effects and alterations of circadian rhythm, as well as stimulating melatonin release.

<span class="mw-page-title-main">JNJ-18038683</span> Chemical compound

JNJ-18038683 is a potent and selective antagonist of the 5HT7 serotonin receptor discovered by Johnson & Johnson. It has nootropic and antidepressant effects in both animal and human studies and has progressed to Phase II trials as an adjunctive treatment for improving cognition and mood in stable bipolar disorder; it has been found to reduce REM sleep (the lightest stage of sleep, elevated in depression) in humans and block circadian rhythm phase-shift advances in mice.

<span class="mw-page-title-main">Melatonin as a medication and supplement</span> Supplement and medication used to treat sleep disorders

Melatonin is a dietary supplement and medication as well as naturally occurring hormone. As a hormone, melatonin is released by the pineal gland and is involved in sleep–wake cycles. As a supplement, it is often used for the short-term treatment of insomnia, such as from jet lag or shift work, and is typically taken orally. Evidence of its benefit for this use, however, is not strong. A 2017 review found that sleep onset occurred six minutes faster with use, but found no change in total time asleep. A prolonged-release form of melatonin is also approved for use as a medication in Europe for the treatment of insomnia in certain people.


  1. Dubocovich ML (September 1988). "Luzindole (N-0774): a novel melatonin receptor antagonist". The Journal of Pharmacology and Experimental Therapeutics. 246 (3): 902–10. PMID   2843633.
  2. 1 2 Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (September 1998). "Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms". The FASEB Journal. 12 (12): 1211–20. doi:10.1096/fasebj.12.12.1211. PMID   9737724. S2CID   566199.
  3. Browning C, Beresford I, Fraser N, Giles H (March 2000). "Pharmacological characterization of human recombinant melatonin mt(1) and MT(2) receptors". British Journal of Pharmacology . 129 (5): 877–86. doi:10.1038/sj.bjp.0703130. PMC   1571913 . PMID   10696085.
  4. Dubocovich ML, Mogilnicka E, Areso PM (July 1990). "Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test". European Journal of Pharmacology. 182 (2): 313–25. doi:10.1016/0014-2999(90)90290-M. PMID   2168835.