N-Ethyltryptamine

Last updated
N-Ethyltryptamine
N-Ethyltryptamine.png
Clinical data
Other namesNET; NETP; Ethyltryptamine
ATC code
  • none
Legal status
Legal status
Identifiers
  • N-Ethyl-2-(1H-indol-3-yl)ethan-1-amine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C12H16N2
Molar mass 188.274 g·mol−1
3D model (JSmol)
Melting point 87 to 88 °C (189 to 190 °F)
  • CCNCCc1c[nH]c2ccccc12
  • InChI=1S/C12H16N2/c1-2-13-8-7-10-9-14-12-6-4-3-5-11(10)12/h3-6,9,13-14H,2,7-8H2,1H3 Yes check.svgY
  • Key:TZWUSTVNAVKAPA-UHFFFAOYSA-N Yes check.svgY
   (verify)

N-Ethyltryptamine (NET) is a tryptamine that is structurally related to N-methyltryptamine (NMT) and the psychedelic drugs N,N-dimethyltryptamine (DMT) and N,N-diethyltryptamine (DET). [1]

It has been found to act as a potent serotonin 5-HT2A receptor full agonist and serotonin releasing agent. [2]

See also

Related Research Articles

<i>N</i>,<i>N</i>-Dimethyltryptamine Chemical compound

N,N-Dimethyltryptamine is a substituted tryptamine that occurs in many plants and animals, including humans, and which is both a derivative and a structural analog of tryptamine. DMT is used as a psychedelic drug and prepared by various cultures for ritual purposes as an entheogen.

<span class="mw-page-title-main">Tryptophan</span> Chemical compound

Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent. Tryptophan is also a precursor to the neurotransmitter serotonin, the hormone melatonin, and vitamin B3 (niacin). It is encoded by the codon UGG.

<span class="mw-page-title-main">5-Hydroxytryptophan</span> Chemical compound

5-Hydroxytryptophan (5-HTP), used medically as oxitriptan, is a naturally occurring amino acid and chemical precursor as well as a metabolic intermediate in the biosynthesis of the neurotransmitter serotonin.

<span class="mw-page-title-main">Diethyltryptamine</span> Chemical compound

DET, also known under its chemical name N,N-diethyltryptamine and as T-9, is a psychedelic drug closely related to DMT and 4-HO-DET. However, despite its structural similarity to DMT, its activity is induced by an oral dose of around 50–100 mg, without the aid of MAO inhibitors, and the effects last for about 2–4 hours.

<span class="mw-page-title-main">5-MeO-DET</span> Chemical compound

5-MeO-DET or 5-methoxy-N,N-diethyltryptamine is a hallucinogenic tryptamine.

<i>N</i>-Methyltryptamine Chemical compound

N-Methyltryptamine (NMT), also known as monomethyltryptamine, is a chemical compound of the tryptamine family and a naturally occurring compound found in the human body and certain plants.

<span class="mw-page-title-main">5-MeS-DMT</span> Chemical compound

5-MeS-DMT (5-methylthio-N,N-dimethyltryptamine) is a lesser-known psychedelic drug. It is the 5-methylthio analog of dimethyltryptamine (DMT). 5-MeS-DMT was first synthesized by Alexander Shulgin. In his book TiHKAL, the minimum dosage is listed as 15-30 mg. The duration listed as very short, just like DMT. 5-MeS-DMT produces similar effects to DMT, but weaker. Shulgin describes his feelings while on a low dose of this drug as "pointlessly stoned", although at a higher dose of 20 mg he says it is "quite intense" and suggests that a higher dose still might have full activity.

<span class="mw-page-title-main">5-MeO-NMT</span> Chemical compound

5-MeO-NMT (5-methoxy-N-methyltryptamine) is an organic chemical compound, being the 5-methoxy analog of N-methyltryptamine (NMT). It was first isolated from Phalaris arundinacea. It has also been synthesized by Alexander Shulgin and reported in his book TiHKAL.

α,<i>N</i>-DMT Chemical compound

α,N-Dimethyltryptamine (α,N-DMT; developmental code names SK&F-7024, Ro 3-1715), also known as N-methyl-α-methyltryptamine (N-methyl-αMT), is a lesser-known substituted tryptamine and psychoactive drug. It is the α,N-dimethyl positional isomer of N,N-dimethyltryptamine (N,N-DMT).

<span class="mw-page-title-main">7,N,N-TMT</span> Chemical compound

7,N,N-trimethyltryptamine (7-methyl-DMT, 7-TMT), is a tryptamine derivative which acts as an agonist of 5-HT2 receptors. In animal tests, both 7-TMT and its 5-methoxy derivative 5-MeO-7-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT, but the larger 7-ethyl and 7-bromo derivatives of DMT did not produce psychedelic responses despite having higher 5-HT2 receptor affinity in vitro (cf. DOBU, DOAM). 7-TMT also weakly inhibits reuptake of serotonin but with little effect on dopamine or noradrenaline reuptake.

<span class="mw-page-title-main">4-Fluoro-5-methoxy-DMT</span> Chemical compound

4-Fluoro-5-Methoxy-N,N-dimethyltryptamine (4-F-5-MeO-DMT) was first described by David E. Nichols team in 2000. It is a potent 5-HT1A agonist. Substitution with the 4-fluorine markedly increased 5-HT1A selectivity over 5-HT2A/2C receptors with potency greater than that of the 5-HT1A agonist 8-OH-DPAT.

<span class="mw-page-title-main">5-Ethyl-DMT</span> Chemical compound

5-Ethyl-N,N-dimethyltryptamine is a tryptamine derivative which acts as an agonist at the 5-HT1A and 5-HT1D serotonin receptors, with around 3x selectivity for 5-HT1D.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">4-PrO-DMT</span> Chemical compound

4-Propionoxy-N,N-dimethyltryptamine is a synthetic psychedelic drug from the tryptamine family with psychedelic effects, and is believed to act as a prodrug for psilocin. It produces a head-twitch response in mice. It has been sold online as a designer drug since May 2019. It was first identified as a new psychoactive substance in Sweden, in July 2019. A number of related derivatives have been synthesized as prodrugs of psilocin for medical applications.

<i>O</i>-Acetylbufotenine Psychedelic tryptamine

O-Acetylbufotenine, or bufotenine O-acetate, also known as 5-acetoxy-N,N-dimethyltryptamine (5-AcO-DMT) or O-acetyl-N,N-dimethylserotonin, is a synthetic tryptamine derivative and putative serotonergic psychedelic. It is the O-acetylated analogue of the naturally occurring peripherally selective serotonergic tryptamine bufotenine and is thought to act as a centrally penetrant prodrug of bufotenine.

<span class="mw-page-title-main">7-Chloro-AMT</span> Chemical compound

7-Chloro-α-methyltryptamine (7-Cl-AMT) is a tryptamine derivative with stimulant effects, invented in the 1960s. It is a weak monoamine oxidase inhibitor but its pharmacology has not otherwise been studied by modern techniques, though several closely related compounds are known to act as serotonin–dopamine releasing agents and agonists of the 5-HT2A receptor.

<span class="mw-page-title-main">5-Chloro-DMT</span> Chemical compound

5-Chloro-N,N-dimethyltryptamine (5-chloro-DMT) is a tryptamine derivative related to compounds such as 5-bromo-DMT and 5-fluoro-DMT. It acts as a serotonin receptor agonist and has primarily sedative effects in animal studies. It has been sold as a designer drug.

<span class="mw-page-title-main">2-HO-NMT</span> Chemical compound

2-Hydroxy-N-methyltryptamine (2-HO-NMT) is a tryptamine and is the 2-hydroxy analog of N-methyltryptamine (NMT). It is briefly mentioned in Alexander Shulgin's book TiHKAL under the DMT entry and is stated to be found in Desmanthus illinoensis.

<span class="mw-page-title-main">Neurotransmitter prodrug</span> A prodrug of a neurotransmitter

A neurotransmitter prodrug, or neurotransmitter precursor, is a drug that acts as a prodrug of a neurotransmitter. A variety of neurotransmitter prodrugs have been developed and used in medicine. They can be useful when the neurotransmitter itself is not suitable for use as a pharmaceutical drug owing to unfavorable pharmacokinetic or physicochemical properties, for instance high susceptibility to metabolism, short elimination half-life, or lack of blood–brain barrier permeability. Besides their use in medicine, neurotransmitter prodrugs have also been used as recreational drugs in some cases.

References

  1. NET Entry in TIHKAL
  2. Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (October 2014). "Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes". Psychopharmacology (Berl). 231 (21): 4135–4144. doi:10.1007/s00213-014-3557-7. PMC   4194234 . PMID   24800892.