6-MeO-isoDMT

Last updated

6-MeO-isoDMT
6-MeO-isoDMT.svg
Clinical data
Other names6-MeO-iso-DMT; 6-Methoxy-isoDMT; 6-OMe-isoDMT; 6-OMe-iso-DMT; 6-Methoxy-iso-DMT; 6-Methoxy-N,N-dimethylisotryptamine
Drug class Serotonin 5-HT2A receptor agonist; Serotonergic psychedelic; Hallucinogen; Psychoplastogen
Identifiers
  • 2-(6-methoxyindol-1-yl)-N,N-dimethylethanamine
CAS Number
PubChem CID
ChemSpider
ChEMBL
Chemical and physical data
Formula C13H18N2O
Molar mass 218.300 g·mol−1
3D model (JSmol)
  • CN(C)CCN1C=CC2=C1C=C(C=C2)OC
  • InChI=1S/C13H18N2O/c1-14(2)8-9-15-7-6-11-4-5-12(16-3)10-13(11)15/h4-7,10H,8-9H2,1-3H3
  • Key:VIEWFQAHIRFETA-UHFFFAOYSA-N

6-MeO-isoDMT, or 6-OMe-isoDMT, also known as 6-methoxy-N,N-dimethylisotryptamine, is a serotonin 5-HT2A receptor agonist, putative serotonergic psychedelic, and psychoplastogen of the isotryptamine group. [1] [2] [3] [4] [5] It is the isotryptamine analogue of the psychedelic 5-MeO-DMT and is a positional isomer of the non-hallucinogenic psychoplastogen 5-MeO-isoDMT. [2] [6] [4] [5]

The drug has been found to substitute for DOM and hence to produce hallucinogen-like effects in animal drug discrimination tests. [1] [7] [5] However, it has greatly reduced hallucinogenic potential in terms of the head-twitch response, a behavioral proxy of psychedelic effects, compared to 5-MeO-DMT. [2] [3] [4] It has even been described as "non-hallucinogenic" in at least one publication, although this does not strictly seem to be true. [8] Conversely, 6-MeO-isoDMT has comparable psychoplastogenic potency and effects compared to 5-MeO-DMT. [2] [3] These effects are blocked by the serotonin 5-HT2A receptor antagonist ketanserin. [3] [4] Certain analogues of 6-MeO-isoDMT, like isoDMT, 5-MeO-isoDMT, and AAZ-A-154 (DLX-001; (R)-5-MeO-α-methyl-isoDMT), produce no head-twitch response at all and hence appear to be fully non-hallucinogenic, similarly to 6-MeO-DMT (the tryptamine analogue of 5-MeO-isoDMT). [1] [3] [4] [5] However, like 6-MeO-isoDMT, they retain potent psychoplastogenic effects. [1] [3] [4]

6-MeO-isoDMT was first described in the scientific literature by 1984. [5] [7] It was subsequently further characterized in 2020. [3] [4] Confusingly, the drug has been referred to as "5-MeO-isoDMT" (or rather "5-OMe-isoDMT") in some publications. [6]

See also

Related Research Articles

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

<span class="mw-page-title-main">5-MeS-DMT</span> Chemical compound

5-MeS-DMT (5-methylthio-N,N-dimethyltryptamine) is a lesser-known psychedelic drug. It is the 5-methylthio analog of dimethyltryptamine (DMT). 5-MeS-DMT was first synthesized by Alexander Shulgin. In his book TiHKAL, the minimum dosage is listed as 15-30 mg. The duration listed as very short, just like DMT. 5-MeS-DMT produces similar effects to DMT, but weaker. Shulgin describes his feelings while on a low dose of this drug as "pointlessly stoned", although at a higher dose of 20 mg he says it is "quite intense" and suggests that a higher dose still might have full activity.

<span class="mw-page-title-main">Quipazine</span> Chemical compound

Quipazine, also known as 1-(2-quinolinyl)piperazine, is a serotonergic drug of the arylpiperazine family and an analogue of 1-(2-pyridinyl)piperazine which is used in scientific research. It was first described in the 1960s and was originally intended as an antidepressant but was never developed or marketed for medical use.

<span class="mw-page-title-main">5-Fluoro-DMT</span> Chemical compound

5-Fluoro-N,N-dimethyltryptamine is a tryptamine derivative related to compounds such as 5-bromo-DMT and 5-MeO-DMT. It produces a robust head-twitch response in mice, and hence is a putative serotonergic psychedelic. Fluorination of psychedelic tryptamines either reduces or has little effect on 5-HT2A/C receptor affinity or intrinsic activity, although 6-fluoro-DET is inactive as a psychedelic despite acting as a 5-HT2A agonist, while 4-fluoro-5-methoxy-DMT is a much stronger agonist at 5-HT1A than 5-HT2A.

5-Methoxy-7,<i>N</i>,<i>N</i>-trimethyltryptamine Chemical compound

5-Methoxy-7,N,N-trimethyltryptamine (5-MeO-7,N,N-TMT, 5-MeO-7-TMT), is a tryptamine derivative which acts as a partial agonist at the 5-HT2 serotonin receptors, with an EC50 of 63.9 nM and an efficacy of 66.2% at 5-HT2A (vs 5-HT), and weaker activity at 5-HT2B and 5-HT2C. In animal tests, both 7,N,N-TMT and 5-MeO-7,N,N-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT and 5-MeO-DMT, but compounds with larger 7-position substituents such as 7-ethyl-DMT and 7-bromo-DMT did not produce psychedelic-appropriate responding despite high 5-HT2 receptor binding affinity, suggesting these may be antagonists or weak partial agonists for the 5-HT2 receptors. The related compound 7-MeO-MiPT (cf. 5-MeO-MiPT) was also found to be inactive, suggesting that the 7-position has poor tolerance for bulky groups at this position, at least if agonist activity is desired.

<span class="mw-page-title-main">7,N,N-TMT</span> Chemical compound

7,N,N-trimethyltryptamine (7-methyl-DMT, 7-TMT), is a tryptamine derivative which acts as an agonist of 5-HT2 receptors. In animal tests, both 7-TMT and its 5-methoxy derivative 5-MeO-7-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT, but the larger 7-ethyl and 7-bromo derivatives of DMT did not produce psychedelic responses despite having higher 5-HT2 receptor affinity in vitro (cf. DOBU, DOAM). 7-TMT also weakly inhibits reuptake of serotonin but with little effect on dopamine or noradrenaline reuptake.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or simply tryptamines, also known as serotonin analogues (i.e., 5-hydroxytryptamine analogues), are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">Head-twitch response</span> Head movement in rodents upon 5-HT2A receptor activation

The head-twitch response (HTR), also sometimes known as wet dog shakes (WDS) in rats, is a rapid side-to-side head movement that occurs in mice and rats when the serotonin 5-HT2A receptor is activated. Serotonergic psychedelics, including lysergic acid diethylamide (LSD), induce the HTR, and so the HTR is widely used as an animal behavioral model of hallucinogen effects and to discover new psychedelic drugs. HTR-like effects are also induced by psychedelics in other animal species, for instance cats and stump-tailed macaque monkeys. Other related behaviors to head twitches induced by serotonergic agents include limb jerks and body scratches. The only other behavioral paradigms for assessment of psychedelic-like effects in animals are drug discrimination (DD), prepulse inhibition (PPI), and time perception.

<span class="mw-page-title-main">25CN-NBOH</span> Chemical compound

25CN-NBOH is a compound indirectly derived from the phenethylamine series of hallucinogens, which was discovered in 2014 at the University of Copenhagen. It is a member of the NBOMe family of psychedelics.

<span class="mw-page-title-main">5-Chloro-αMT</span> Chemical compound

5-Chloro-α-methyltryptamine (5-Chloro-αMT), also known as PAL-542, is a tryptamine derivative related to α-methyltryptamine (αMT) and one of only a few known serotonin–dopamine releasing agents (SDRAs). It is also a potent serotonin 5-HT2A receptor agonist and hence may be a serotonergic psychedelic. The drug has been investigated in animals as a potential treatment for cocaine dependence.

<span class="mw-page-title-main">AAZ-A-154</span> Chemical compound

AAZ-A-154, also known as DLX-001 or as (R)-5-methoxy-N,N-dimethyl-α-methylisotryptamine, is a novel isotryptamine derivative which acts as a serotonin 5-HT2A receptor agonist discovered and synthesized by the lab of Professor David E. Olson at the University of California, Davis. It is being developed for the treatment of major depressive disorder and other central nervous system disorders.

<i>O</i>-Acetylbufotenine Psychedelic tryptamine

O-Acetylbufotenine, or bufotenine O-acetate, also known as 5-acetoxy-N,N-dimethyltryptamine (5-AcO-DMT) or O-acetyl-N,N-dimethylserotonin, is a synthetic tryptamine derivative and putative serotonergic psychedelic. It is the O-acetylated analogue of the naturally occurring peripherally selective serotonergic tryptamine bufotenine and is thought to act as a centrally penetrant prodrug of bufotenine.

<span class="mw-page-title-main">6-Fluoro-DET</span> Chemical compound

6-Fluoro-DET is a substituted tryptamine derivative related to drugs such as DET and 5-fluoro-DET. It acts as a partial agonist at the 5-HT2A receptor, but while it produces similar physiological effects to psychedelic drugs, it does not appear to produce psychedelic effects itself even at high doses. For this reason it saw some use as an active placebo in early clinical trials of psychedelic drugs but was regarded as having little use otherwise, though more recent research into compounds such as AL-34662, TBG and AAZ-A-154 has shown that these kind of non-psychedelic 5-HT2A agonists can have various useful applications.

<span class="mw-page-title-main">6-MeO-DMT</span> Non-hallucinogenic 5-HT2A agonist

6-MeO-DMT, or 6-methoxy-N,N-dimethyltryptamine, also known as 6-OMe-DMT, is a serotonergic drug of the tryptamine family. It is the 6-methoxy derivative of the serotonergic psychedelic N,N-dimethyltryptamine (DMT) and is a positional isomer of the serotonergic psychedelic 5-MeO-DMT.

BMB-202 is a serotonin 5-HT2A receptor agonist and psychedelic hallucinogen which is under development for the treatment of depressive disorders and post-traumatic stress disorder (PTSD). It is taken by mouth. However, BMB-202 has also been evaluated by injection in preclinical studies.

<span class="mw-page-title-main">Isotryptamine</span> Chemical compound

Isotryptamine, also known as 2-(1-indolyl)ethylamine, is a chemical compound and positional isomer of tryptamine.

<span class="mw-page-title-main">5-MeO-isoDMT</span> Serotonergic psychoplastogen

5-MeO-isoDMT, or 5-OMe-isoDMT, also known as 5-methoxy-N,N-dimethylisotryptamine, is a putatively non-hallucinogenic serotonin 5-HT2A receptor agonist and psychoplastogen of the isotryptamine group. It is the isotryptamine analogue of the non-hallucinogenic 6-MeO-DMT and is a positional isomer of the psychedelic 6-MeO-isoDMT.

α-Methylisotryptamine Monoaminergic drug

α-Methylisotryptamine is a synthetic compound belonging to the tryptamine class, known for its psychoactive properties. As a structural analog of α-methyltryptamine (αMT), isoAMT exhibits entactogenic and psychedelic effects.

isoDMT Serotonergic drug

isoDMT, also known as N,N-dimethylisotryptamine, is a putatively non-hallucinogenic serotonin 5-HT2A receptor agonist and psychoplastogen of the isotryptamine group. It is the isotryptamine homologue of dimethyltryptamine (DMT), a more well-known serotonergic psychedelic of the tryptamine family, and represents a small structural modification of DMT.

<span class="mw-page-title-main">Ibogainalog</span> Serotonergic psychedelic

Ibogainalog (IBG), also known as 9-methoxyibogaminalog, is a serotonergic psychedelic and psychoplastogen related to ibogaine but with a simplified chemical structure.

References

  1. 1 2 3 4 Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chemical Reviews. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID   38033123.
  2. 1 2 3 4 Olson DE (April 2021). "The Subjective Effects of Psychedelics May Not Be Necessary for Their Enduring Therapeutic Effects". ACS Pharmacology & Translational Science. 4 (2): 563–567. doi:10.1021/acsptsci.0c00192. PMC   8033607 . PMID   33861218. [6-MeO-isoDMT] exhibits significantly reduced hallucinogenic potential, as measured by the mouse head-twitch response (HTR) assay, while retaining psychoplastogenic potency comparable to its hallucinogenic congener (Figure 1).31 Because 6-MeO-isoDMT is at least equipotent to 5-MeO-DMT with respect to its ability to promote neural plasticity, it cannot simply be viewed as a less potent hallucinogen. In fact, many of the nonhallucinogenic analogues of psychedelics that our group has developed will not produce hallucinogenic behavioral responses in rodents even at extremely high doses. [...] Figure 1. Hallucinogenic and psychoplastogenic effects can be decoupled through careful chemical design. [...]
  3. 1 2 3 4 5 6 7 Dunlap LE (2022). "Development of Non-Hallucinogenic Psychoplastogens". eScholarship. Retrieved 19 November 2024.
  4. 1 2 3 4 5 6 7 Dunlap LE, Azinfar A, Ly C, Cameron LP, Viswanathan J, Tombari RJ, et al. (February 2020). "Identification of Psychoplastogenic N,N-Dimethylaminoisotryptamine (isoDMT) Analogues through Structure-Activity Relationship Studies". Journal of Medicinal Chemistry. 63 (3): 1142–1155. doi:10.1021/acs.jmedchem.9b01404. PMC   7075704 . PMID   31977208.
  5. 1 2 3 4 5 Glennon RA, Jacyno JM, Young R, McKenney JD, Nelson D (January 1984). "Synthesis and evaluation of a novel series of N,N-dimethylisotryptamines". Journal of Medicinal Chemistry. 27 (1): 41–45. doi:10.1021/jm00367a008. PMID   6581313.
  6. 1 2 Glennon RA, Young R (5 August 2011). "Role of stereochemistry in drug discrimination studies". In Glennon RA, Young R (eds.). Drug Discrimination: Applications to Medicinal Chemistry and Drug Studies. Wiley. pp. 129–161. doi:10.1002/9781118023150. ISBN   978-0-470-43352-2.
  7. 1 2 Glennon RA, Young R (1987). "The Study of Structure-Activity Relationships Using Drug Discrimination Methodology". Methods of Assessing the Reinforcing Properties of Abused Drugs. New York, NY: Springer New York. pp. 373–390. doi:10.1007/978-1-4612-4812-5_18. ISBN   978-1-4612-9163-3.
  8. Langlitz N (2024). "Psychedelic innovations and the crisis of psychopharmacology". BioSocieties. 19 (1): 37–58. doi:10.1057/s41292-022-00294-4. ISSN   1745-8552. [...] David Olson's laboratory [...] developed the psychedelic 5-Meo-DMT into the supposedly nonpsychedelic 6-Meo-isoDMT, which enhanced neuroplasticity without inducing a head-twitch response in mice. [...] But, since no self-experimental reports on how drugs like 6-Meo-isoDMT [...] affect the human mind have been published and preclinical human trials are still far of, it is not certain whether these drugs are actually free of psychedelic effects, and if they would be clinically efficacious.