5-MeO-MET

Last updated
5-MeO-MET
5-MeO-MET.svg
Identifiers
  • N-Ethyl-2-(5-methoxy-1H-indol-3-yl)-N-methylethan-1-amine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C14H20N2O
Molar mass 232.327 g·mol−1
3D model (JSmol)
  • CCN(CCc1c[nH]c2c1cc(OC)cc2)C
  • InChI=1S/C14H20N2O/c1-4-16(2)8-7-11-10-15-14-6-5-12(17-3)9-13(11)14/h5-6,9-10,15H,4,7-8H2,1-3H3
  • Key:AVECDEWGCOLCPZ-UHFFFAOYSA-N

5-MeO-MET (5-Methoxy-N-methyl-N-ethyltryptamine) is a relatively rare designer drug from the substituted tryptamine family, related to compounds such as N-methyl-N-ethyltryptamine and 5-MeO-DMT. [1] [2] [3] It was first synthesised in the 1960s and was studied to a limited extent, [4] [5] but was first identified on the illicit market in June 2012 in Sweden. [6] It was made illegal in Norway in 2013, [7] and is controlled under analogue provisions in numerous other jurisdictions.

See also

Related Research Articles

<i>N</i>,<i>N</i>-Dimethyltryptamine Chemical compound

N,N-Dimethyltryptamine is a substituted tryptamine that occurs in many plants and animals, including humans, and which is both a derivative and a structural analog of tryptamine. DMT is used as a psychedelic drug and prepared by various cultures for ritual purposes as an entheogen.

α-Methyltryptamine Chemical compound

α-Methyltryptamine is a psychedelic, stimulant, and entactogen drug of the tryptamine class. It was originally developed as an antidepressant by workers at Upjohn in the 1960s, and was used briefly as an antidepressant in Russia under the trade name Indopan before being discontinued.

<span class="mw-page-title-main">5-MeO-DMT</span> Chemical compound

5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine) or O-methyl-bufotenin is a psychedelic of the tryptamine class. It is found in a wide variety of plant species, and also is secreted by the glands of at least one toad species, the Colorado River toad. Like its close relatives DMT and bufotenin (5-HO-DMT), it has been used as an entheogen in South America. Slang terms include Five-methoxy, the power, bufo, and toad venom.

5-Methoxy-<i>N</i>,<i>N</i>-diisopropyltryptamine Psychedelic tryptamine

5-Methoxy-N,N-diisopropyltryptamine is a psychedelic tryptamine and the methoxy derivative of diisopropyltryptamine (DiPT).

<span class="mw-page-title-main">Psilocin</span> Chemical compound

Psilocin is a substituted tryptamine alkaloid and a serotonergic psychedelic substance. It is present in most psychedelic mushrooms together with its phosphorylated counterpart psilocybin. Psilocin is a Schedule I drug under the Convention on Psychotropic Substances. Acting on the 5-HT2A receptors, psilocin modulates the production and reuptake of serotonin. The mind-altering effects of psilocin are highly variable and subjective and resemble those of LSD and DMT.

<span class="mw-page-title-main">Diisopropyltryptamine</span> Chemical compound

Diisopropyltryptamine is a psychedelic hallucinogenic drug of the tryptamine family that has a unique effect. While the majority of hallucinogens affect the visual sense, DiPT is primarily aural.

<span class="mw-page-title-main">5-MeO-MiPT</span> Chemical compound

5-MeO-MiPT is a psychedelic and hallucinogenic drug, used by some as an entheogen. It has structural and pharmacodynamic properties similar to the drugs 5-MeO-DiPT, DiPT, and MiPT. It is commonly used as a "substitute" for 5-MeO-DiPT because of the very similar structure and effects.

<span class="mw-page-title-main">5-MeO-DET</span> Chemical compound

5-MeO-DET or 5-methoxy-N,N-diethyltryptamine is a hallucinogenic tryptamine.

<span class="mw-page-title-main">4-HO-MiPT</span> Chemical compound

4-HO-MiPT is a synthetic substituted aromatic compound and a lesser-known psychedelic tryptamine. It is thought to be a serotonergic psychedelic, similar to magic mushrooms, LSD and mescaline. Its molecular structure and pharmacological effects somewhat resemble those of the tryptamine psilocin, which is the primary psychoactive chemical in magic mushrooms.

<i>N</i>-Methyltryptamine Chemical compound

N-Methyltryptamine (NMT) is a member of the substituted tryptamine chemical class and a natural product which is biosynthesized in the human body from tryptamine by certain N-methyltransferase enzymes, such as indolethylamine N-methyltransferase. It is a common component in human urine. NMT is an alkaloid derived from L-tryptophan that has been found in the bark, shoots and leaves of several plant genera, including Virola, Acacia, Mimosa, and Desmanthus—often together with the related compounds N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT).

<span class="mw-page-title-main">5-MeO-AET</span> Chemical compound

5-Methoxy-alpha-ethyltryptamine (5-MeO-α-ET) is a psychoactive drug and member of the tryptamine chemical class. It produces psychedelic and stimulant effects.

<span class="mw-page-title-main">4-Hydroxy-5-methoxydimethyltryptamine</span> Chemical compound

4-Hydroxy-5-methoxydimethyltryptamine, also known as 4-HO-5-MeO-DMT or psilomethoxin, is a hypothetical novel psychedelic drug. It is the 4-hydroxy counterpart of 5-MeO-DMT, or the 5-methoxy counterpart of psilocin.

5-Methoxy-7,<i>N</i>,<i>N</i>-trimethyltryptamine Chemical compound

5-Methoxy-7,N,N-trimethyltryptamine (5-MeO-7,N,N-TMT, 5-MeO-7-TMT), is a tryptamine derivative which acts as a partial agonist at the 5-HT2 serotonin receptors, with an EC50 of 63.9 nM and an efficacy of 66.2% at 5-HT2A (vs 5-HT), and weaker activity at 5-HT2B and 5-HT2C. In animal tests, both 7,N,N-TMT and 5-MeO-7,N,N-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT and 5-MeO-DMT, but compounds with larger 7-position substituents such as 7-ethyl-DMT and 7-bromo-DMT did not produce psychedelic-appropriate responding despite high 5-HT2 receptor binding affinity, suggesting these may be antagonists or weak partial agonists for the 5-HT2 receptors. The related compound 7-MeO-MiPT (cf. 5-MeO-MiPT) was also found to be inactive, suggesting that the 7-position has poor tolerance for bulky groups at this position, at least if agonist activity is desired.

<span class="mw-page-title-main">7,N,N-TMT</span> Chemical compound

7,N,N-trimethyltryptamine (7-methyl-DMT, 7-TMT), is a tryptamine derivative which acts as an agonist of 5-HT2 receptors. In animal tests, both 7-TMT and its 5-methoxy derivative 5-MeO-7-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT, but the larger 7-ethyl and 7-bromo derivatives of DMT did not produce psychedelic responses despite having higher 5-HT2 receptor affinity in vitro (cf. DOBU, DOAM). 7-TMT also weakly inhibits reuptake of serotonin but with little effect on dopamine or noradrenaline reuptake.

<span class="mw-page-title-main">4-AcO-MET</span> Chemical compound

4-acetoxy-MET (4-acetoxy-N-methyl-N-ethyltryptamine), also known as 4-AcO-MET or metacetin, is a hallucinogenic tryptamine. It is the acetate ester of 4-HO-MET, and a homologue of 4-AcO-DMT. It is a novel compound with very little history of human use. It is sometimes sold as a research chemical by online retailers.

<span class="mw-page-title-main">MALT (psychedelic drug)</span> Chemical compound

MALT is a lesser-known drug from the tryptamine family. It is a novel compound with very little history of human use. It is closely related to methylpropyltryptamine (MPT), as well as N-methyltryptamine. It has been sold online as a designer drug. Very little information on the pharmacology or toxicity of MALT is available.

<i>O</i>-Acetylbufotenine Chemical compound

O-Acetylbufotenine is a tryptamine derivative which produces psychedelic-appropriate responding in animal studies. It is an acylated derivative of bufotenine with higher lipophilicity that allows it to cross the blood–brain barrier; once inside the brain, it is metabolised to bufotenine. It also acts directly as an agonist at 5-HT1A and 5-HT1D receptors.

References

  1. Schifano F, Orsolini L, Papanti D, Corkery J (2017). "NPS: Medical Consequences Associated with Their Intake". Current Topics in Behavioral Neurosciences. 32: 351–380. doi: 10.1007/7854_2016_15 . ISBN   978-3-319-52442-9. PMID   27272067.
  2. Palma-Conesa ÁJ, Ventura M, Galindo L, Fonseca F, Grifell M, Quintana P, Fornís I, Gil C, Farré M, Torrens M (2017). "Something New about Something Old: A 10-Year Follow-Up on Classical and New Psychoactive Tryptamines and Results of Analysis". Journal of Psychoactive Drugs. 49 (4): 297–305. doi:10.1080/02791072.2017.1320732. PMID   28569652. S2CID   45394561.
  3. Malaca S, Lo Faro AF, Tamborra A, Pichini S, Busardò FP, Huestis MA (December 2020). "Toxicology and Analysis of Psychoactive Tryptamines". International Journal of Molecular Sciences. 21 (23): 9279. doi: 10.3390/ijms21239279 . PMC   7730282 . PMID   33291798.
  4. Gessner PK, Godse DD, Krull AH, McMullan JM (March 1968). "Structure-activity relationships among 5-methoxy-n:n-dimethyltryptamine, 4-hydroxy-n:n-dimethyltryptamine (psilocin) and other substituted tryptamines". Life Sciences. 7 (5): 267–77. doi:10.1016/0024-3205(68)90200-2. PMID   5641719.
  5. Glennon RA, Gessner PK (April 1979). "Serotonin receptor binding affinities of tryptamine analogues". Journal of Medicinal Chemistry. 22 (4): 428–32. doi:10.1021/jm00190a014. PMID   430481.
  6. "EMCDDA–Europol 2012 Annual Report on the implementation of Council Decision 2005/387/JHA" (PDF). New drugs in Europe, 2012.
  7. "Forskrift om endring i forskrift om narkotika" [Regulations amending the regulations on drugs]. Lovdata (in Norwegian).