Isotryptamine

Last updated
Isotryptamine
Isotryptamine.svg
Names
IUPAC name
2-indol-1-ylethanamine
Other names
2-Indolylethylamine; 2-(1-Indolyl)ethylamine; 2-(1H-Indol-1-yl)ethanamine
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C10H12N2/c11-6-8-12-7-5-9-3-1-2-4-10(9)12/h1-5,7H,6,8,11H2
    Key: BXEFQUSYBZYTAE-UHFFFAOYSA-N
  • C1=CC=C2C(=C1)C=CN2CCN
Properties
C10H12N2
Molar mass 160.220 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Isotryptamine, also known as 2-(1-indolyl)ethylamine, is a chemical compound and positional isomer of tryptamine (2-(3-indolyl)ethylamine). [1] A number of isotryptamine derivatives, or substituted isotryptamines, have been developed, including serotonergic psychedelics and psychoplastogens like 6-MeO-isoDMT, [2] [3] non-hallucinogenic psychoplastogens like isoDMT, 5-MeO-isoDMT, and AAZ-A-154 (DLX-001), [4] [5] [6] [7] serotonin 5-HT2C receptor agonists, [8] [9] [10] [11] [12] and serotonin 5-HT6 receptor modulators. [13] [14] [15]

Related Research Articles

<span class="mw-page-title-main">Psilocin</span> Chemical compound

Psilocin, also known as 4-hydroxy-N,N-dimethyltryptamine (4-OH-DMT), is a substituted tryptamine alkaloid and a serotonergic psychedelic. It is present in most psychedelic mushrooms together with its phosphorylated counterpart psilocybin. Psilocin is a Schedule I drug under the Convention on Psychotropic Substances. Acting on the serotonin 5-HT2A receptors, psilocin's psychedelic effects are directly correlated with the drug's occupancy at these receptor sites. The subjective mind-altering effects of psilocin are highly variable and are said to resemble those of lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT).

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

5-HT<sub>6</sub> receptor Protein-coding gene in the species Homo sapiens

The 5HT6 receptor is a subtype of 5HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gs and mediates excitatory neurotransmission. HTR6 denotes the human gene encoding for the receptor.

<span class="mw-page-title-main">7,N,N-TMT</span> Chemical compound

7,N,N-trimethyltryptamine (7-methyl-DMT, 7-TMT), is a tryptamine derivative which acts as an agonist of 5-HT2 receptors. In animal tests, both 7-TMT and its 5-methoxy derivative 5-MeO-7-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT, but the larger 7-ethyl and 7-bromo derivatives of DMT did not produce psychedelic responses despite having higher 5-HT2 receptor affinity in vitro (cf. DOBU, DOAM). 7-TMT also weakly inhibits reuptake of serotonin but with little effect on dopamine or noradrenaline reuptake.

<span class="mw-page-title-main">5-Ethyl-DMT</span> Chemical compound

5-Ethyl-N,N-dimethyltryptamine is a tryptamine derivative which acts as an agonist at the 5-HT1A and 5-HT1D serotonin receptors, with around 3x selectivity for 5-HT1D.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or simply tryptamines, also known as serotonin analogues (i.e., 5-hydroxytryptamine analogues), are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">5-MeO-NBpBrT</span> Chemical compound

5-MeO-NBpBrT is a N-substituted member of the methoxytryptamine family of compounds. Like other such compounds it acts as an antagonist for the 5-HT2A receptor, with a claimed 100x selectivity over the closely related 5-HT2C receptor. While N-benzyl substitution of psychedelic phenethylamines often results in potent 5-HT2A agonists, it had been thought that N-benzyl tryptamines show much lower efficacy and are either very weak partial agonists or antagonists at 5-HT2A, though more recent research has shown stronger agonist activity for 3-substituted benzyl derivatives. Extending the benzyl group to a substituted phenethyl can also recover agonist activity in certain cases.

<span class="mw-page-title-main">25CN-NBOH</span> Chemical compound

25CN-NBOH is a compound indirectly derived from the phenethylamine series of hallucinogens, which was discovered in 2014 at the University of Copenhagen. This compound is notable as one of the most selective agonist ligands for the 5-HT2A receptor yet discovered, with a pKi of 8.88 at the human 5-HT2A receptor and with 100x selectivity for 5-HT2A over 5-HT2C, and 46x selectivity for 5-HT2A over 5-HT2B. A tritiated version of 25CN-NBOH has also been accessed and used for more detailed investigations of the binding to 5-HT2 receptors and autoradiography.

<span class="mw-page-title-main">Acetryptine</span> Drug

Acetryptine (INN), also known as 5-acetyltryptamine (5-AT), is a drug described as an antihypertensive agent which was never marketed. Structurally, acetryptine is a substituted tryptamine, and is closely related to other substituted tryptamines like serotonin (5-hydroxytryptamine). It was developed in the early 1960s. The binding of acetryptine to serotonin receptors does not seem to have been well-investigated, although it was assessed at the 5-HT1A and 5-HT1D receptors and found to bind to them with high affinity. The drug may also act as a monoamine oxidase inhibitor (MAOI); specifically, as an inhibitor of MAO-A.

<span class="mw-page-title-main">Tabernanthalog</span> Chemical compound

Tabernanthalog is a novel water-soluble, non-toxic azepinoindole analog of the psychoactive drug Tabernanthine first synthesized by Professor David E. Olson at UC Davis.

<span class="mw-page-title-main">AAZ-A-154</span> Chemical compound

AAZ-A-154, also known as DLX-001 or as (R)-5-methoxy-N,N-dimethyl-α-methylisotryptamine, is a novel isotryptamine derivative which acts as a serotonin 5-HT2A receptor agonist discovered and synthesized by the lab of Professor David E. Olson at the University of California, Davis. It is being developed for the treatment of major depressive disorder and other central nervous system disorders.

<i>O</i>-Acetylbufotenine Psychedelic tryptamine

O-Acetylbufotenine, or bufotenine O-acetate, also known as 5-acetoxy-N,N-dimethyltryptamine (5-AcO-DMT) or O-acetyl-N,N-dimethylserotonin, is a synthetic tryptamine derivative and putative serotonergic psychedelic. It is the O-acetylated analogue of the naturally occurring peripherally selective serotonergic tryptamine bufotenine and is thought to act as a centrally penetrant prodrug of bufotenine.

<span class="mw-page-title-main">Lysergine</span> Ergot alkaloid and serotonin receptor agonist

Lysergine, also known as 9,10-didehydro-6,8β-dimethylergoline, is an ergot alkaloid and serotonin receptor agonist of the ergoline family. It is a minor constituent of ergot.

ITI-1549 is a putatively non-hallucinogenic serotonin 5-HT2A receptor agonist which is under development for the treatment of mood disorders and other psychiatric disorders. In addition to acting at the serotonin 5-HT2A receptor, it is also an antagonist of the serotonin 5-HT2B receptor and an agonist of the serotonin 5-HT2C receptor. The drug's route of administration has not been specified.

<span class="mw-page-title-main">6-MeO-DMT</span> Non-hallucinogenic 5-HT2A agonist

6-MeO-DMT, or 6-methoxy-N,N-dimethyltryptamine, also known as 6-OMe-DMT, is a serotonergic drug of the tryptamine family. It is the 6-methoxy derivative of the serotonergic psychedelic N,N-dimethyltryptamine (DMT) and is a positional isomer of the serotonergic psychedelic 5-MeO-DMT.

<span class="mw-page-title-main">6-MeO-isoDMT</span> Serotonergic psychoplastogen

6-MeO-isoDMT, or 6-OMe-isoDMT, also known as 6-methoxy-N,N-dimethylisotryptamine, is a serotonin 5-HT2A receptor agonist, putative serotonergic psychedelic, and psychoplastogen of the isotryptamine group. It is the isotryptamine analogue of the psychedelic 5-MeO-DMT and is a positional isomer of the non-hallucinogenic psychoplastogen 5-MeO-isoDMT.

<span class="mw-page-title-main">5-MeO-isoDMT</span> Serotonergic psychoplastogen

5-MeO-isoDMT, or 5-OMe-isoDMT, also known as 5-methoxy-N,N-dimethylisotryptamine, is a putatively non-hallucinogenic serotonin 5-HT2A receptor agonist and psychoplastogen of the isotryptamine group. It is the isotryptamine analogue of the non-hallucinogenic 6-MeO-DMT and is a positional isomer of the psychedelic 6-MeO-isoDMT.

References

  1. "2-(1H-indol-1-yl)ethanamine". PubChem. Retrieved 14 November 2024.
  2. Glennon RA, Jacyno JM, Young R, McKenney JD, Nelson D (January 1984). "Synthesis and evaluation of a novel series of N,N-dimethylisotryptamines". J Med Chem. 27 (1): 41–45. doi:10.1021/jm00367a008. PMID   6581313.
  3. Dunlap LE, Azinfar A, Ly C, Cameron LP, Viswanathan J, Tombari RJ, Myers-Turnbull D, Taylor JC, Grodzki AC, Lein PJ, Kokel D, Olson DE (February 2020). "Identification of Psychoplastogenic N,N-Dimethylaminoisotryptamine (isoDMT) Analogues through Structure-Activity Relationship Studies". J Med Chem. 63 (3): 1142–1155. doi:10.1021/acs.jmedchem.9b01404. PMC   7075704 . PMID   31977208.
  4. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID   38033123.
  5. Atiq MA, Baker MR, Voort JL, Vargas MV, Choi DS (May 2024). "Disentangling the acute subjective effects of classic psychedelics from their enduring therapeutic properties". Psychopharmacology (Berl). doi: 10.1007/s00213-024-06599-5 . PMID   38743110.
  6. Rasmussen K, Chytil M, Agrawal R, Leach P, Gillie D, Mungenast A, Vancutsem P, Engel S, Meyer R, Koenig A, Rus M (2024). "14. Preclinical Pharmacology of DLX-001, a Novel Non-Hallucinogenic Neuroplastogen With the Potential for Treating Neuropsychiatric Diseases". Biological Psychiatry. 95 (10). Elsevier BV: S80. doi:10.1016/j.biopsych.2024.02.192. ISSN   0006-3223.
  7. Rasmussen K, Engel S, Chytil M, Koenig A, Meyer R, Rus M, Olson D, Salinas E (December 2023). "ACNP 62nd Annual Meeting: Poster Abstracts P251 - P500: P361. Preclinical Pharmacology of DLX-001, a Novel Non-Hallucinogenic Neuroplastogen With the Potential for Treating Neuropsychiatric Diseases". Neuropsychopharmacology. 48 (Suppl 1): 211–354 (274–275). doi:10.1038/s41386-023-01756-4. PMC  10729596. PMID   38040810.
  8. Chang-Fong J, Addo J, Dukat M, Smith C, Mitchell NA, Herrick-Davis K, Teitler M, Glennon RA (January 2002). "Evaluation of isotryptamine derivatives at 5-HT(2) serotonin receptors". Bioorg Med Chem Lett. 12 (2): 155–158. doi:10.1016/s0960-894x(01)00713-2. PMID   11755343.
  9. Bishop, Michael J; Nilsson, Björn M (2003). "New 5-HT2C receptor agonists". Expert Opinion on Therapeutic Patents. 13 (11): 1691–1705. doi:10.1517/13543776.13.11.1691. ISSN   1354-3776.
  10. Dutton, Alice C.; Barnes, Nicholas M. (2006). "Anti-obesity pharmacotherapy: Future perspectives utilising 5-HT2C receptor agonists". Drug Discovery Today: Therapeutic Strategies. 3 (4): 577–583. doi:10.1016/j.ddstr.2006.11.005.
  11. Nilsson BM (July 2006). "5-Hydroxytryptamine 2C (5-HT2C) receptor agonists as potential antiobesity agents". J Med Chem. 49 (14): 4023–4034. doi:10.1021/jm058240i. PMID   16821762.
  12. Lee J, Jung ME, Lee J (November 2010). "5-HT2C receptor modulators: a patent survey". Expert Opin Ther Pat. 20 (11): 1429–1455. doi:10.1517/13543776.2010.518956. PMID   20849206.
  13. Geldenhuys WJ, Van der Schyf CJ (2008). "Serotonin 5-HT6 receptor antagonists for the treatment of Alzheimer's disease". Curr Top Med Chem. 8 (12): 1035–1048. doi:10.2174/156802608785161420. PMID   18691131.
  14. Glennon RA, Siripurapu U, Roth BL, Kolanos R, Bondarev ML, Sikazwe D, Lee M, Dukat M (2010). "The medicinal chemistry of 5-HT6 receptor ligands with a focus on arylsulfonyltryptamine analogs". Curr Top Med Chem. 10 (5): 579–595. doi:10.2174/156802610791111542. PMC   5839515 . PMID   20166945.
  15. Siddiqui N, Andalip, Bawa S, Ali R, Afzal O, Akhtar MJ, Azad B, Kumar R (April 2011). "Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review". J Pharm Bioallied Sci. 3 (2): 194–212. doi: 10.4103/0975-7406.80765 . PMC   3103913 . PMID   21687347.