6-Hydroxytryptamine

Last updated
6-Hydroxytryptamine
6-Hydroxytryptamine.svg
Clinical data
Other names6-Hydroxy-T; 6-HT; 6-HO-T; 6-OH-T
Drug class Serotonin receptor modulator
ATC code
  • None
Identifiers
  • 3-(2-aminoethyl)-1H-indol-6-ol
CAS Number
PubChem CID
ChemSpider
ChEMBL
Chemical and physical data
Formula C10H12N2O
Molar mass 176.219 g·mol−1
3D model (JSmol)
  • C1=CC2=C(C=C1O)NC=C2CCN
  • InChI=1S/C10H12N2O/c11-4-3-7-6-12-10-5-8(13)1-2-9(7)10/h1-2,5-6,12-13H,3-4,11H2
  • Key:WZTKTNRVJAMKAS-UHFFFAOYSA-N

6-Hydroxytryptamine (6-HT or 6-HO-T) is a serotonin receptor modulator of the tryptamine family related to serotonin. [1] [2] [3] It is a positional isomer of serotonin (5-hydroxytryptamine; 5-HT) and of 4-hydroxytryptamine (4-HT). [1] [2] [3]

Contents

Pharmacology

6-Hydroxytryptamine shows dramatically reduced affinity for serotonin receptors, including the serotonin 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptors (Ki = 1,590 nM, 5,890 nM, 11,500 nM, and 5,500 nM, respectively), compared to serotonin, 4-hydroxytryptamine, 5-methoxytryptamine, and certain other tryptamines. [3] It did not produce hyperlocomotion in rodents but did partially reverse reserpine-induced hypoactivity. [4] 6-Hydroxytryptamine appears to be less susceptible to metabolism by monoamine oxidase (MAO) than serotonin. [5]

History

6-Hydroxytryptamine was first described in the scientific literature by the 1950s. [6]

Derivatives

Certain β-carbolines and harmala alkaloids, such as harmol, harmalol, and tetrahydroharmol, as well as their O-methyl (methoxy) analogues including harmine, harmaline, and tetrahydroharmine, are notable in being naturally occurring cyclized tryptamine derivatives of 6-hydroxytryptamine. [7] [8] The same is true of certain iboga alkaloids, such as tabernanthine and ibogaline. [9] [10] [11] [12] Tabernanthalog (DLX-007) is a synthetic simplified ibogalog analogue of tabernanthine that is under development for use as a potential pharmaceutical drug in the treatment of neuropsychiatric disorders. [13] [14]

See also

References

  1. 1 2 Brimblecombe RW, Pinder RM (1975). "Indolealkylamines and Related Compounds". Hallucinogenic Agents. Bristol: Wright-Scientechnica. pp. 98–144. ISBN   978-0-85608-011-1. OCLC   2176880. OL   4850660M.
  2. 1 2 Hoffer A, Osmond H (1967). "Indole Hallucinogens Derived from Tryptophan". The Hallucinogens. Elsevier. pp. 443–516 (468). doi:10.1016/b978-1-4832-3296-6.50008-2. ISBN   978-1-4832-3296-6. LCCN   66030086. OCLC   332437. OL   35255701M.
  3. 1 2 3 Glennon RA (January 1987). "Central serotonin receptors as targets for drug research". J Med Chem. 30 (1): 1–12. doi:10.1021/jm00384a001. PMID   3543362. Some selected binding data are shown in Table III. N-Monomethylation and N,N-dimethylation of 5-HT decrease its affinity for 5-HT1 binding sites. Relocation of the hydroxyl group to the 4- or 6-position (ie., 4-hydroxytryptamine and 6-hydroxytryptamine, respectively) also decreases affinity (except that the affinity of 4-hydroxytryptamine is not very different from that of 5-HT for 5-HT1c sites).
  4. Kalir A, Szara S (May 1966). "Synthesis and pharmacological activity of alkylated tryptamines" (PDF). J Med Chem. 9 (3): 341–344. doi:10.1021/jm00321a017. PMID   5960901.
  5. Erspamer V, Ferrini R, Glasser A (December 1960). "A note on the oxidative deamination of isomers of 5-hydroxytryptamine and other indolealkylamines". J Pharm Pharmacol. 12: 761–764. doi:10.1111/j.2042-7158.1960.tb12743.x. PMID   13697284.
  6. Vane JR (March 1959). "The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation". Br J Pharmacol Chemother. 14 (1): 87–98. doi:10.1111/j.1476-5381.1959.tb00933.x. PMC   1481817 . PMID   13651584.
  7. Shulgin, Alexander; Shulgin, Ann (September 1997). TiHKAL: The Continuation. Berkeley, California: Transform Press. ISBN   0-9630096-9-9. OCLC   38503252.
  8. Grella B, Dukat M, Young R, Teitler M, Herrick-Davis K, Gauthier CB, Glennon RA (April 1998). "Investigation of hallucinogenic and related beta-carbolines". Drug Alcohol Depend. 50 (2): 99–107. doi:10.1016/s0376-8716(97)00163-4. PMID   9649961.
  9. Popik, Piotr; Skolnick, Phil (1999). "Pharmacology of Ibogaine and Ibogaine-Related Alkaloids". The Alkaloids: Chemistry and Biology. Vol. 52. Elsevier. p. 197–231. doi:10.1016/s0099-9598(08)60027-9. ISBN   978-0-12-469552-8 . Retrieved 17 June 2025.
  10. Lavaud C, Massiot G (2017). "The Iboga Alkaloids" (PDF). Prog Chem Org Nat Prod. 105: 89–136. doi:10.1007/978-3-319-49712-9_2. PMID   28194562.
  11. Iyer RN, Favela D, Zhang G, Olson DE (March 2021). "The iboga enigma: the chemistry and neuropharmacology of iboga alkaloids and related analogs". Nat Prod Rep. 38 (2): 307–329. doi:10.1039/d0np00033g. PMC   7882011 . PMID   32794540.
  12. Hughes, Alexander J.; Hamelink, Charles R.; Townsend, Steven D. (5 September 2024). "Disrupting Substance Use Disorder: The Chemistry of Iboga Alkaloids". European Journal of Organic Chemistry. doi: 10.1002/ejoc.202400432 . ISSN   1434-193X.
  13. Chen MJ, Chen-Li D, Chisamore N, Husain MI, Di Vincenzo JD, Mansur RB, Phan L, Johnson D, McIntyre RS, Rosenblat JD (July 2025). "Non-hallucinogenic psychedelics for mood and anxiety disorders: A systematic review". Psychiatry Res. 349: 116532. doi:10.1016/j.psychres.2025.116532. PMID   40354769.
  14. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. (January 2021). "A non-hallucinogenic psychedelic analogue with therapeutic potential". Nature. 589 (7842): 474–479. Bibcode:2021Natur.589..474C. doi:10.1038/s41586-020-3008-z. PMC   7874389 . PMID   33299186.