Risperidone

Last updated

Risperidone
Risperidone.svg
Risperidone-3D-balls.png
Clinical data
Trade names Risperdal, Okedi, others [1]
AHFS/Drugs.com Monograph
MedlinePlus a694015
License data
Pregnancy
category
  • AU:C
Routes of
administration
By mouth, intramuscular, subcutaneous
Drug class Atypical antipsychotic [2]
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 70% (by mouth) [2]
Metabolism Liver (CYP2D6 mediated to 9-hydroxyrisperidone) [2]
Elimination half-life 20 hours (by mouth), 3–6 days (IM) [2]
Excretion Urinary (70%) feces (14%) [2]
Identifiers
  • 3-[2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one
CAS Number
PubChem CID
PubChemSID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
PDB ligand
CompTox Dashboard (EPA)
ECHA InfoCard 100.114.705 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C23H27FN4O2
Molar mass 410.493 g·mol−1
3D model (JSmol)
  • Cc1c(c(=O)n2c(n1)CCCC2)CCN3CCC(CC3)c4c5ccc(cc5on4)F
  • InChI=1S/C23H27FN4O2/c1-15-18(23(29)28-10-3-2-4-21(28)25-15)9-13-27-11-7-16(8-12-27)22-19-6-5-17(24)14-20(19)30-26-22/h5-6,14,16H,2-4,7-13H2,1H3 Yes check.svgY
  • Key:RAPZEAPATHNIPO-UHFFFAOYSA-N Yes check.svgY
   (verify)
A box of Rispolept (Risperidone) tablets Rispolept Risperidone.jpg
A box of Rispolept (Risperidone) tablets

Risperidone, sold under the brand name Risperdal among others, is an atypical antipsychotic [2] used to treat schizophrenia and bipolar disorder, [2] as well as irritability associated with autism. [9] It is taken either by mouth or by injection (i.e., subcutaneous or intramuscular). [2] The injectable versions are long-acting and last for 2–4 weeks. [10]

Contents

Common side effects include weight gain, drowsiness, fatigue, insomnia, dry mouth, constipation, elevated prolactin levels, and restlessness. [2] [11] Serious side effects may include the potentially permanent movement disorder tardive dyskinesia, as well as neuroleptic malignant syndrome, an increased risk of suicide, and high blood sugar levels. [2] [10] In older people with psychosis as a result of dementia, it may increase the risk of death. [2] It is unknown if it is safe for use in pregnancy. [2] Its mechanism of action is not entirely clear, but is believed to be related to its action as a dopamine and serotonin antagonist. [2]

Study of risperidone began in the late 1980s and it was approved for sale in the United States in 1993. [2] [9] [7] It is on the World Health Organization's List of Essential Medicines. [12] It is available as a generic medication. [10] In 2022, it was the 183rd most commonly prescribed medication in the United States, with more than 2 million prescriptions. [13] [14]

Medical uses

Risperidone is mainly used for the treatment of schizophrenia, bipolar disorder, and irritability associated with autism. [15]

Schizophrenia

Risperidone is effective in treating psychogenic polydipsia and the acute exacerbations of schizophrenia. [16] [17]

Studies evaluating the utility of risperidone by mouth for maintenance therapy have reached varying conclusions. A 2012 systematic review concluded that evidence is strong that risperidone is more effective than all first-generation antipsychotics other than haloperidol, but that evidence directly supporting its superiority to placebo is equivocal. [18] A 2011 review concluded that risperidone is more effective in relapse prevention than other first- and second-generation antipsychotics with the exception of olanzapine and clozapine. [19] A 2016 Cochrane review suggests that risperidone reduces the overall symptoms of schizophrenia, but firm conclusions are difficult to make due to very low-quality evidence. Data and information are scarce, poorly reported, and probably biased in favour of risperidone, with about half of the included trials developed by drug companies. The article raises concerns regarding the serious side effects of risperidone, such as parkinsonism. [20] A 2011 Cochrane review compared risperidone with other atypical antipsychotics such as olanzapine for schizophrenia: [21]

Summary
Risperidone seems to produce somewhat more extrapyramidal side effects and clearly more prolactin increase than other atypical antipsychotics. It may also differ from other compounds in the occurrence of other adverse effects such as weight gain, metabolic problems, cardiac effects, sedation, and seizures. Nevertheless, the large proportion of participants leaving studies early and incomplete reporting of outcomes makes drawing firm conclusions difficult. [21]

Long-acting injectable formulations of antipsychotic drugs provide improved compliance with therapy and reduce relapse rates relative to oral formulations. [22] [23] The efficacy of risperidone long-acting injection appears to be similar to that of long-acting injectable forms of first-generation antipsychotics. [24]

Bipolar disorder

Second-generation antipsychotics, including risperidone, are effective in the treatment of manic symptoms in acute manic or mixed exacerbations of bipolar disorder. [25] [26] [27] In children and adolescents, risperidone may be more effective than lithium or valproate, but has more metabolic side effects. [28] As maintenance therapy, long-acting injectable risperidone is effective for the prevention of manic episodes but not depressive episodes. [29] The long-acting injectable form of risperidone may be advantageous over long-acting first-generation antipsychotics, as it is better tolerated (fewer extrapyramidal effects) and because long acting injectable formulations of first-generation antipsychotics may increase the risk of depression. [30]

Autism

Compared to placebo, risperidone treatment reduces certain problematic behaviors in autistic children, including aggression toward others, self-injury, challenging behavior, and rapid mood changes. [31] The evidence for its efficacy appears to be greater than that for alternative pharmacological treatments. [32] Weight gain is an important adverse effect. [7] [33] Some authors recommend limiting the use of risperidone and aripiprazole to those with the most challenging behavioral disturbances to minimize the risk of drug-induced adverse effects. [34] Evidence for the efficacy of risperidone in autistic adolescents and young adults is less persuasive. [35]

Dementia

While antipsychotic medications such as risperidone have a slight benefit in people with dementia, they have been linked to a higher incidence of death and stroke. [36] Because of this increased risk of death, treatment of dementia-related psychosis with risperidone is not FDA-approved and carries a black box warning. [7] However, many other jurisdictions regularly use it to control severe aggression and psychosis in those with dementia when other non-pharmacological interventions have failed and their pharmaceutical regulators have approved its use in this population. [37] [38]

Other uses

Risperidone has demonstrated clinical benefit as an augmentation agent in the management of (unipolar) non-psychotic treatment-resistant depression alongside antidepressant treatment. [39] Atypical antipsychotics, such as risperidone, are among the most common augments for antidepressant therapy. Such usage occurs off-label in most jurisdictions and the risk of adverse effects (e.g., weight gain, movement disorders) must be carefully weighed against the clinical benefit. [40]

Risperidone has shown promise in treating therapy-resistant obsessive–compulsive disorder, when serotonin reuptake inhibitors alone are not sufficient. [41]

Risperidone has proven to be effective in treatment with attention deficit hyperactivity disorder (ADHD), especially in cases of aggression [42] [43] or with another mental condition. [44]

Risperidone has not demonstrated a benefit in the treatment of eating disorders or personality disorders, except for limited evidence in schizotypal personality disorder. [36]

Available forms

Available forms of risperidone include tablet, orally dissolving tablet, oral solution, and powder and solvent for injection. [45]

Adverse effects

Common side effects include movement problems, sleepiness, dizziness, trouble seeing, constipation, and increased weight. [2] [11] About 9 to 20% of people gained more than 7% of the baseline weight depending on the dose. [2] Serious side effects may include the potentially permanent movement disorder tardive dyskinesia, as well as neuroleptic malignant syndrome, an increased risk of suicide, and high blood sugar levels. [2] [10] In older people with psychosis as a result of dementia, it may increase the risk of death. [2]

While atypical antipsychotics appear to have a lower rate of movement problems as compared to typical antipsychotics, risperidone has a high risk of movement problems among the atypicals. [46] [47] Atypical antipsychotics, however, are associated with a greater amount of weight gain and other metabolic side effects. [48] [47]

Discontinuation

The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotic treatment to avoid acute withdrawal syndrome or rapid relapse. [49]

Dementia

Older people with dementia-related psychosis are at a higher risk of death. [7]

Interactions

Pharmacology

Pharmacodynamics

Risperidone [54] [55]
SiteKi (nM)
5-HT1A 423Antagonist
5-HT1B 14.9Antagonist
5-HT1D 84.6Antagonist
5-HT2A 0.17Inverse agonist
5-HT2B 29–61.9Inverse agonist
5-HT2C 12.0Inverse agonist
5-HT5A 206Antagonist
5-HT6 2,060Antagonist
5-HT7 6.60Irreversible
antagonist [56]
α1A 5.0Antagonist
α1B 9.0Antagonist
α2A 16.5Antagonist
α2B 108Antagonist
α2C 1.30Antagonist
D1 244Antagonist
D2 3.57Antagonist
D2S 4.73Antagonist
D2L 4.16Antagonist
D3 3.6Inverse agonist
D4 4.66Antagonist
D5 290Antagonist
H1 20.1Inverse agonist
H2 120Inverse agonist
mACh Tooltip Muscarinic acetylcholine receptor>10,000Negligible

Risperidone has been classified as a "qualitatively atypical" antipsychotic agent with a relatively low incidence of extrapyramidal side effects (when given at low doses) that has more pronounced serotonin antagonism than dopamine antagonism. Risperidone contains the functional groups of benzisoxazole and piperidine as part of its molecular structure. Although not a butyrophenone, it was developed with the structures of benperidol and ketanserin as a basis. It has actions at several 5-HT (serotonin) receptor subtypes. These are 5-HT2C, linked to weight gain, and 5-HT2A, linked to its antipsychotic action and relief of some of the extrapyramidal side effects experienced with typical antipsychotics. [57]

It has been found that D-amino acid oxidase, the enzyme that catalyses the breakdown of D-amino acids (e.g. D-alanine and D-serine — the neurotransmitters) is inhibited by risperidone. [58]

Risperidone acts on the following receptors:

Dopamine receptors: This drug is an antagonist of the D1 (D1, and D5) as well as the D2 (D2, D3 and D4) family receptors, with 70-fold selectivity for the D2 family. It has "tight binding" properties, which means it has a long half-life. Like other antipsychotics, risperidone blocks the mesolimbic pathway, the prefrontal cortex limbic pathway, and the tuberoinfundibular pathway in the central nervous system. Risperidone may induce extrapyramidal side effects, akathisia and tremors, which is associated with diminished dopaminergic activity in the striatum. It can also cause sexual side effects, galactorrhoea, infertility, gynecomastia, and, with chronic use, reduced bone mineral density leading to breaks, all of which are associated with increased prolactin secretion. [57]

Serotonin receptors: The most important pharmacological function is to compensate for dopamine blocking.[ medical citation needed ]

Alpha α1 adrenergic receptors: This action accounts for the orthostatic hypotensive effects and perhaps some of the sedating effects of risperidone. [57]

Alpha α2 adrenergic receptors: Risperidone's action at these receptors may cause greater positive, negative, affective, and cognitive symptom control. [59]

Histamine H1 receptors: effects on these receptors account for its sedation and reduction in vigilance. This may also lead to drowsiness and weight gain. [57]

Voltage-gated sodium channels: Because it accumulates in synaptic vesicles, Risperidone inhibits voltage-gated sodium channels at clinically used concentrations. [60]

Pharmacokinetics

Risperidone undergoes hepatic metabolism and renal excretion. Lower doses are recommended for patients with severe liver and kidney disease. [7] The active metabolite of risperidone, paliperidone, is also used as an antipsychotic. [61] [ unreliable medical source? ]

Pharmacokinetics of long-acting injectable antipsychotics
MedicationBrand nameClassVehicleDosageTmaxt1/2 singlet1/2 multiplelogPcRef
Aripiprazole lauroxil Aristada Atypical Water a441–1064 mg/4–8 weeks24–35 days ?54–57 days7.9–10.0
Aripiprazole monohydrate Abilify Maintena Atypical Water a300–400 mg/4 weeks7 days ?30–47 days4.9–5.2
Bromperidol decanoate Impromen Decanoas Typical Sesame oil 40–300 mg/4 weeks3–9 days ?21–25 days7.9 [62]
Clopentixol decanoate Sordinol Depot Typical Viscoleo b50–600 mg/1–4 weeks4–7 days ?19 days9.0 [63]
Flupentixol decanoate Depixol Typical Viscoleo b10–200 mg/2–4 weeks4–10 days8 days17 days7.2–9.2 [63] [64]
Fluphenazine decanoate Prolixin Decanoate Typical Sesame oil 12.5–100 mg/2–5 weeks1–2 days1–10 days14–100 days7.2–9.0 [65] [66] [67]
Fluphenazine enanthate Prolixin Enanthate Typical Sesame oil 12.5–100 mg/1–4 weeks2–3 days4 days ?6.4–7.4 [66]
Fluspirilene Imap, Redeptin Typical Water a2–12 mg/1 week1–8 days7 days ?5.2–5.8 [68]
Haloperidol decanoate Haldol Decanoate Typical Sesame oil 20–400 mg/2–4 weeks3–9 days18–21 days7.2–7.9 [69] [70]
Olanzapine pamoate Zyprexa Relprevv Atypical Water a150–405 mg/2–4 weeks7 days ?30 days
Oxyprothepin decanoate Meclopin Typical  ? ? ? ? ?8.5–8.7
Paliperidone palmitate Invega Sustenna Atypical Water a39–819 mg/4–12 weeks13–33 days25–139 days ?8.1–10.1
Perphenazine decanoate Trilafon Dekanoat Typical Sesame oil 50–200 mg/2–4 weeks ? ?27 days8.9
Perphenazine enanthate Trilafon Enanthate Typical Sesame oil 25–200 mg/2 weeks2–3 days ?4–7 days6.4–7.2 [71]
Pipotiazine palmitate Piportil Longum Typical Viscoleo b25–400 mg/4 weeks9–10 days ?14–21 days8.5–11.6 [64]
Pipotiazine undecylenate Piportil Medium Typical Sesame oil 100–200 mg/2 weeks ? ? ?8.4
RisperidoneRisperdal Consta Atypical Microspheres 12.5–75 mg/2 weeks21 days ?3–6 days
Zuclopentixol acetate Clopixol Acuphase Typical Viscoleo b50–200 mg/1–3 days1–2 days1–2 days4.7–4.9
Zuclopentixol decanoate Clopixol Depot Typical Viscoleo b50–800 mg/2–4 weeks4–9 days ?11–21 days7.5–9.0
Note: All by intramuscular injection. Footnotes:a = Microcrystalline or nanocrystalline aqueous suspension. b = Low-viscosity vegetable oil (specifically fractionated coconut oil with medium-chain triglycerides). c = Predicted, from PubChem and DrugBank. Sources:Main: See template.
Risperdal (risperidone) 4 mg tablets (UK) Risperdal tablets.jpg
Risperdal (risperidone) 4 mg tablets (UK)

Society and culture

Risperidone was approved by the United States Food and Drug Administration (FDA) in 1993 for the treatment of schizophrenia. [72] In 2003, the FDA approved risperidone for the short-term treatment of the mixed and manic states associated with bipolar disorder. In 2006, the FDA approved risperidone for the treatment of irritability in autistic children and adolescents. [73] The FDA's decision was based in part on a study of autistic people with severe and enduring problems of violent meltdowns, aggression, and self-injury; risperidone is not recommended for autistic people with mild aggression and explosive behavior without an enduring pattern. [74] On 22 August 2007, risperidone was approved as the only drug agent available for the treatment of schizophrenia in youths, ages 13–17; it was also approved that same day for the treatment of bipolar disorder in youths, ages 10–17, joining lithium.

On 16 December 2021, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) formally recommended market authorization for Okedi, a long-acting depot injection of risperidone. Okedi was approved for the treatment of schizophrenia in adults for whom the tolerability and effectiveness of risperidone had already been established using an oral formulation. [75] Long-acting depot injectable risperidone was approved for medical use in the European Union in February 2022. [8] [76]

Lawsuits

In April 2012, Johnson & Johnson (J&J) and its subsidiary Janssen Pharmaceuticals Inc. were fined $1.2 billion for downplaying multiple risks associated with risperidone. [77] The verdict was later reversed by the Arkansas state supreme court. [78]

In August 2012, J&J agreed to pay $181 million to 36 US states to settle claims that it had promoted risperidone and paliperidone for off-label uses including for dementia, anger management, and anxiety. [79]

In November 2013, J&J was fined $2.2 billion for illegally marketing risperidone for use in people with dementia and paying kickbacks to prescribing physicians and nursing home pharmacies. [80]

In 2015, Steven Brill wrote an investigative journalism piece about J&J in The Huffington Post focused on J&J's marketing of risperidone. [81] [82]

J&J has faced numerous civil lawsuits on behalf of children who were prescribed risperidone who grew breasts (a condition called gynecomastia); as of July 2016 there were about 1,500 cases in Pennsylvania state court in Philadelphia, and there had been a February 2015 verdict against J&J with $2.5 million awarded to a man from Alabama, a $1.75 million verdict against J&J that November, and in 2016 a $70 million verdict against J&J. [83] In October 2019, a jury ordered J&J to pay $8 billion in punitive damages to a Pennsylvania man who had grown breasts during adolescence. [84] This verdict amount chosen by the jury was reduced more than 1,000-fold by a judge in January 2020, with the new punitive damages being $6.8 million. [85] A legal scholar commented that punitive damages which exceed the compensatory damages by a factor of 10 or more in cases of this type are usually found to be legally invalid. [84]

Brand names

Janssen's patent on risperidone expired in December 2003, opening the market for cheaper generic versions from other companies, and Janssen's exclusive marketing rights expired in June 2004 (the result of a pediatric extension). It is available under many brand names worldwide. [1]

Risperidone is available as a tablet, an oral solution, and an ampule, which is a depot injection. [1]

Brand names include Risperdal, Risperdal Consta, Risperdal M-Tab, Risperdal Quicklets, Risperlet, Okedi, and Perseris. [86]

Related Research Articles

<span class="mw-page-title-main">Antipsychotic</span> Class of medications

Antipsychotics, previously known as neuroleptics and major tranquilizers, are a class of psychotropic medication primarily used to manage psychosis, principally in schizophrenia but also in a range of other psychotic disorders. They are also the mainstay, together with mood stabilizers, in the treatment of bipolar disorder. Moreover, they are also used as adjuncts in the treatment of treatment-resistant major depressive disorder.

<span class="mw-page-title-main">Haloperidol</span> Typical antipsychotic medication

Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the treatment of schizophrenia, tics in Tourette syndrome, mania in bipolar disorder, delirium, agitation, acute psychosis, and hallucinations from alcohol withdrawal. It may be used by mouth or injection into a muscle or a vein. Haloperidol typically works within 30 to 60 minutes. A long-acting formulation may be used as an injection every four weeks for people with schizophrenia or related illnesses, who either forget or refuse to take the medication by mouth.

<span class="mw-page-title-main">Atypical antipsychotic</span> Class of pharmaceutical drugs

The atypical antipsychotics (AAP), also known as second generation antipsychotics (SGAs) and serotonin–dopamine antagonists (SDAs), are a group of antipsychotic drugs largely introduced after the 1970s and used to treat psychiatric conditions. Some atypical antipsychotics have received regulatory approval for schizophrenia, bipolar disorder, irritability in autism, and as an adjunct in major depressive disorder.

<span class="mw-page-title-main">Quetiapine</span> Atypical antipsychotic medication

Quetiapine, sold under the brand name Seroquel among others, is an atypical antipsychotic medication used for the treatment of schizophrenia, bipolar disorder, and major depressive disorder. Despite being widely used as a sleep aid due to its tranquillizing effects, the benefits of such use may not outweigh the risk of undesirable side effects. It is taken orally.

<span class="mw-page-title-main">Ziprasidone</span> Antipsychotic medication

Ziprasidone, sold under the brand name Geodon among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder. It may be used by mouth and by injection into a muscle (IM). The IM form may be used for acute agitation in people with schizophrenia.

<span class="mw-page-title-main">Olanzapine</span> Atypical antipsychotic medication

Olanzapine, sold under the brand name Zyprexa among others, is an atypical antipsychotic primarily used to treat schizophrenia and bipolar disorder. It is also sometimes used off-label for treatment of chemotherapy-induced nausea and vomiting and as an appetite stimulant. For schizophrenia, it can be used for both new-onset disease and long-term maintenance. It is taken by mouth or by injection into a muscle.

<span class="mw-page-title-main">Perphenazine</span> Antipsychotic medication

Perphenazine is a typical antipsychotic drug. Chemically, it is classified as a piperazinyl phenothiazine. Originally marketed in the United States as Trilafon, it has been in clinical use for decades.

<span class="mw-page-title-main">Aripiprazole</span> Atypical antipsychotic

Aripiprazole, sold under the brand names Abilify and Aristada, among others, is an atypical antipsychotic. It is primarily used in the treatment of schizophrenia and bipolar disorder; other uses include as an add-on treatment in major depressive disorder and obsessive–compulsive disorder (OCD), tic disorders, and irritability associated with autism. Aripiprazole is taken by mouth or via injection into a muscle. A Cochrane review found low-quality evidence of effectiveness in treating schizophrenia.

<span class="mw-page-title-main">Dopamine antagonist</span> Drug which blocks dopamine receptors

A dopamine antagonist, also known as an anti-dopaminergic and a dopamine receptor antagonist (DRA), is a type of drug which blocks dopamine receptors by receptor antagonism. Most antipsychotics are dopamine antagonists, and as such they have found use in treating schizophrenia, bipolar disorder, and stimulant psychosis. Several other dopamine antagonists are antiemetics used in the treatment of nausea and vomiting.

<span class="mw-page-title-main">Amisulpride</span> Atypical antipsychotic and antiemetic medication

Amisulpride, sold under the brand names Solian and Barhemsys, is a medication used in the treatment of schizophrenia, acute psychotic episodes, depression, and nausea and vomiting. It is specifically used at lower doses intravenously to prevent and treat postoperative nausea and vomiting; at low doses by mouth to treat depression; and at higher doses by mouth to treat psychosis.

<span class="mw-page-title-main">Paliperidone</span> Antipsychotic medication

Paliperidone, sold under the brand name Invega among others, is an atypical antipsychotic. It is mainly used to treat schizophrenia and schizoaffective disorder. It is marketed by Janssen Pharmaceuticals.

Extrapyramidal symptoms (EPS) are symptoms that are archetypically associated with the extrapyramidal system of the brain's cerebral cortex. When such symptoms are caused by medications or other drugs, they are also known as extrapyramidal side effects (EPSE). The symptoms can be acute (short-term) or chronic (long-term). They include movement dysfunction such as dystonia, akathisia, parkinsonism characteristic symptoms such as rigidity, bradykinesia, tremor, and tardive dyskinesia. Extrapyramidal symptoms are a reason why subjects drop out of clinical trials of antipsychotics; of the 213 (14.6%) subjects that dropped out of one of the largest clinical trials of antipsychotics, 58 (27.2%) of those discontinuations were due to EPS.

<span class="mw-page-title-main">Asenapine</span> Medication to treat schizophrenia

Asenapine, sold under the brand name Saphris among others, is an atypical antipsychotic medication used to treat schizophrenia and acute mania associated with bipolar disorder as well as the medium to long-term management of bipolar disorder.

<span class="mw-page-title-main">Iloperidone</span> Atypical antipsychotic medication

Iloperidone, commonly known as Fanapt and previously known as Zomaril, is an atypical antipsychotic for the treatment of schizophrenia and bipolar I disorder.

<span class="mw-page-title-main">Perospirone</span> Atypical antipsychotic medication

Perospirone (Lullan) is an atypical antipsychotic of the azapirone family. It was introduced in Japan by Dainippon Sumitomo Pharma in 2001 for the treatment of schizophrenia and acute cases of bipolar mania.

<span class="mw-page-title-main">Lurasidone</span> Atypical antipsychotic medication

Lurasidone, sold under the brand name Latuda among others, is an antipsychotic medication used to treat schizophrenia and bipolar depression. It is taken by mouth.

<span class="mw-page-title-main">Pimavanserin</span> Atypical antipsychotic medication

Pimavanserin, sold under the brand name Nuplazid, is an atypical antipsychotic which is approved for the treatment of Parkinson's disease psychosis. It is taken by mouth.

<span class="mw-page-title-main">Cariprazine</span> Atypical antipsychotic medicine

Cariprazine, sold under the brand name Vraylar among others, is an atypical antipsychotic developed by Gedeon Richter, which is used in the treatment of schizophrenia, bipolar mania, bipolar depression, and major depressive disorder. It acts primarily as a D3 and D2 receptor partial agonist, with a preference for the D3 receptor. Cariprazine is also a partial agonist at the serotonin 5-HT1A receptor and acts as an antagonist at 5-HT2B and 5-HT2A receptors, with high selectivity for the D3 receptor. It is taken by mouth. The most prevalent side effects include nausea, mild sedation, fatigue, and dizziness. At higher dosages, there is an increased risk for restlessness, insomnia, and tremors.

<span class="mw-page-title-main">Brexpiprazole</span> Atypical antipsychotic

Brexpiprazole, sold under the brand name Rexulti among others, is an atypical antipsychotic medication used for the treatment of major depressive disorder, schizophrenia, and agitation associated with dementia due to Alzheimer's disease.

<span class="mw-page-title-main">Aripiprazole lauroxil</span> Chemical compound

Aripiprazole lauroxil, sold under the brand name Aristada, is a long-acting injectable atypical antipsychotic that was developed by Alkermes. It is an N-acyloxymethyl prodrug of aripiprazole that is administered via intramuscular injection once every four to eight weeks for the treatment of schizophrenia. Aripiprazole lauroxil was approved by the U.S. Food and Drug Administration (FDA) on 5 October 2015.

References

  1. 1 2 3 Drugs.com International trade names for risperidone Archived 18 March 2016 at the Wayback Machine Page accessed 15 March 2016
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 "Risperidone". The American Society of Health-System Pharmacists. Archived from the original on 2 December 2015. Retrieved 1 December 2015.
  3. Anvisa (31 March 2023). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 4 April 2023). Archived from the original on 3 August 2023. Retrieved 16 August 2023.
  4. "Risperdal Product information". Health Canada . 28 March 2019. Archived from the original on 2 April 2024. Retrieved 2 April 2024.
  5. "Risperdal Consta 25 mg powder and solvent for prolonged-release suspension for injection - Summary of Product Characteristics (SmPC)". (emc). 6 December 2018. Archived from the original on 30 January 2022. Retrieved 29 January 2022.
  6. "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA . Retrieved 22 October 2023.
  7. 1 2 3 4 5 6 7 8 9 10 "Risperdal- risperidone tablet Risperdal M-Tab- risperidone tablet, orally disintegrating Risperdal- risperidone solution". DailyMed. Archived from the original on 30 April 2017. Retrieved 31 December 2019.
  8. 1 2 "Okedi EPAR". European Medicines Agency (EMA). 15 December 2021. Archived from the original on 3 March 2022. Retrieved 2 March 2022.
  9. 1 2 Schatzberg AF, Nemeroff CB (2009). The American Psychiatric Publishing textbook of psychopharmacology (4th ed.). Washington, D.C.: American Psychiatric Pub. p. 627. ISBN   9781585623099.
  10. 1 2 3 4 Hamilton R (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. pp. 434–435. ISBN   9781284057560.
  11. 1 2 Hasnain M, Vieweg WV, Hollett B (July 2012). "Weight gain and glucose dysregulation with second-generation antipsychotics and antidepressants: a review for primary care physicians". Postgraduate Medicine. 124 (4): 154–67. doi:10.3810/pgm.2012.07.2577. PMID   22913904. S2CID   39697130.
  12. World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl: 10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  13. "The Top 300 of 2022". ClinCalc. Archived from the original on 30 August 2024. Retrieved 30 August 2024.
  14. "Risperidone Drug Usage Statistics, United States, 2013 - 2022". ClinCalc. Retrieved 30 August 2024.
  15. "Respiridone". The American Society of Health-System Pharmacists. Archived from the original on 13 April 2011. Retrieved 3 April 2011.
  16. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. (September 2013). "Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis". Lancet. 382 (9896): 951–62. doi:10.1016/S0140-6736(13)60733-3. PMID   23810019. S2CID   32085212.
  17. Osser DN, Roudsari MJ, Manschreck T (2013). "The psychopharmacology algorithm project at the Harvard South Shore Program: an update on schizophrenia". Harvard Review of Psychiatry. 21 (1): 18–40. doi:10.1097/HRP.0b013e31827fd915. PMID   23656760. S2CID   22523977.
  18. Barry SJ, Gaughan TM, Hunter R (June 2012). "Schizophrenia". BMJ Clinical Evidence. 2012. PMC   3385413 . PMID   23870705.
  19. Glick ID, Correll CU, Altamura AC, Marder SR, Csernansky JG, Weiden PJ, et al. (December 2011). "Mid-term and long-term efficacy and effectiveness of antipsychotic medications for schizophrenia: a data-driven, personalized clinical approach". The Journal of Clinical Psychiatry. 72 (12): 1616–27. doi:10.4088/JCP.11r06927. PMID   22244023.
  20. Rattehalli RD, Zhao S, Li BG, Jayaram MB, Xia J, Sampson S (December 2016). "Risperidone versus placebo for schizophrenia" (PDF). The Cochrane Database of Systematic Reviews. 2016 (12): CD006918. doi:10.1002/14651858.CD006918.pub3. PMC   6463908 . PMID   27977041. Archived (PDF) from the original on 28 January 2019. Retrieved 27 November 2018.
  21. 1 2 Komossa K, Rummel-Kluge C, Schwarz S, Schmid F, Hunger H, Kissling W, Leucht S (January 2011). "Risperidone versus other atypical antipsychotics for schizophrenia". The Cochrane Database of Systematic Reviews (1): CD006626. doi:10.1002/14651858.CD006626.pub2. PMC   4167865 . PMID   21249678.
  22. Leucht C, Heres S, Kane JM, Kissling W, Davis JM, Leucht S (April 2011). "Oral versus depot antipsychotic drugs for schizophrenia--a critical systematic review and meta-analysis of randomised long-term trials". Schizophrenia Research. 127 (13): 83–92. doi:10.1016/j.schres.2010.11.020. PMID   21257294. S2CID   2386150.
  23. Lafeuille MH, Dean J, Carter V, Duh MS, Fastenau J, Dirani R, Lefebvre P (August 2014). "Systematic review of long-acting injectables versus oral atypical antipsychotics on hospitalization in schizophrenia". Current Medical Research and Opinion. 30 (8): 1643–55. doi:10.1185/03007995.2014.915211. PMID   24730586. S2CID   24814527.
  24. Nielsen J, Jensen SO, Friis RB, Valentin JB, Correll CU (May 2015). "Comparative effectiveness of risperidone long-acting injectable vs first-generation antipsychotic long-acting injectables in schizophrenia: results from a nationwide, retrospective inception cohort study". Schizophrenia Bulletin. 41 (3): 627–36. doi:10.1093/schbul/sbu128. PMC   4393684 . PMID   25180312.
  25. Muralidharan K, Ali M, Silveira LE, Bond DJ, Fountoulakis KN, Lam RW, Yatham LN (September 2013). "Efficacy of second generation antipsychotics in treating acute mixed episodes in bipolar disorder: a meta-analysis of placebo-controlled trials". Journal of Affective Disorders. 150 (2): 408–14. doi:10.1016/j.jad.2013.04.032. PMID   23735211.
  26. Nivoli AM, Murru A, Goikolea JM, Crespo JM, Montes JM, González-Pinto A, et al. (October 2012). "New treatment guidelines for acute bipolar mania: a critical review". Journal of Affective Disorders. 140 (2): 125–41. doi:10.1016/j.jad.2011.10.015. PMID   22100133.
  27. Yildiz A, Vieta E, Leucht S, Baldessarini RJ (January 2011). "Efficacy of antimanic treatments: meta-analysis of randomized, controlled trials". Neuropsychopharmacology. 36 (2): 375–89. doi:10.1038/npp.2010.192. PMC   3055677 . PMID   20980991.
  28. Peruzzolo TL, Tramontina S, Rohde LA, Zeni CP (2013). "Pharmacotherapy of bipolar disorder in children and adolescents: an update". Revista Brasileira de Psiquiatria. 35 (4): 393–405. doi: 10.1590/1516-4446-2012-0999 . hdl: 10183/181642 . PMID   24402215.
  29. Gitlin M, Frye MA (May 2012). "Maintenance therapies in bipolar disorders". Bipolar Disorders. 14 (Suppl 2): 51–65. doi:10.1111/j.1399-5618.2012.00992.x. PMID   22510036. S2CID   21101054.
  30. Gigante AD, Lafer B, Yatham LN (May 2012). "Long-acting injectable antipsychotics for the maintenance treatment of bipolar disorder". CNS Drugs. 26 (5): 403–20. doi:10.2165/11631310-000000000-00000. PMID   22494448. S2CID   2786921.
  31. Jesner OS, Aref-Adib M, Coren E (January 2007). "Risperidone for autism spectrum disorder". The Cochrane Database of Systematic Reviews. 2010 (1): CD005040. doi:10.1002/14651858.CD005040.pub2. PMC   9022437 . PMID   17253538.
  32. Kirino E (2014). "Efficacy and tolerability of pharmacotherapy options for the treatment of irritability in autistic children". Clinical Medicine Insights. Pediatrics. 8: 17–30. doi:10.4137/CMPed.S8304. PMC   4051788 . PMID   24932108.
  33. Sharma A, Shaw SR (2012). "Efficacy of risperidone in managing maladaptive behaviors for children with autistic spectrum disorder: a meta-analysis". Journal of Pediatric Health Care. 26 (4): 291–9. doi:10.1016/j.pedhc.2011.02.008. PMID   22726714.
  34. McPheeters ML, Warren Z, Sathe N, Bruzek JL, Krishnaswami S, Jerome RN, Veenstra-Vanderweele J (May 2011). "A systematic review of medical treatments for children with autism spectrum disorders". Pediatrics. 127 (5): e1312–21. doi:10.1542/peds.2011-0427. PMID   21464191. S2CID   2903864.
  35. Dove D, Warren Z, McPheeters ML, Taylor JL, Sathe NA, Veenstra-VanderWeele J (October 2012). "Medications for adolescents and young adults with autism spectrum disorders: a systematic review". Pediatrics. 130 (4): 717–26. doi:10.1542/peds.2012-0683. PMC   4074627 . PMID   23008452.
  36. 1 2 Maher AR, Theodore G (June 2012). "Summary of the comparative effectiveness review on off-label use of atypical antipsychotics". Journal of Managed Care Pharmacy. 18 (5 Suppl B): S1–20. doi: 10.18553/jmcp.2012.18.s5-b.1 . PMC   10438344 . PMID   22784311.
  37. "Risperidone: Revised PBS restrictions for behavioural and psychological symptoms of dementia". NPS MedicineWise. 19 March 2020. Archived from the original on 14 May 2022. Retrieved 14 May 2022.
  38. "Antipsychotics and other drug approaches in dementia care | Alzheimer's Society". www.alzheimers.org.uk. 13 August 2021. Archived from the original on 21 January 2022. Retrieved 14 May 2022.
  39. Keitner GI, Garlow SJ, Ryan CE, Ninan PT, Solomon DA, Nemeroff CB, Keller MB (January 2009). "A randomized, placebo-controlled trial of risperidone augmentation for patients with difficult-to-treat unipolar, non-psychotic major depression". J Psychiatr Res. 43 (3): 205–14. doi:10.1016/j.jpsychires.2008.05.003. PMC   3685867 . PMID   18586273.
  40. Spielmans GI, Berman MI, Linardatos E, Rosenlicht NZ, Perry A, Tsai AC (2013). "Adjunctive atypical antipsychotic treatment for major depressive disorder: a meta-analysis of depression, quality of life, and safety outcomes". PLOS Med. 10 (3): e1001403. doi: 10.1371/journal.pmed.1001403 . PMC   3595214 . PMID   23554581.
  41. Dold M, Aigner M, Lanzenberger R, Kasper S (April 2013). "Antipsychotic augmentation of serotonin reuptake inhibitors in treatment-resistant obsessive-compulsive disorder: a meta-analysis of double-blind, randomized, placebo-controlled trials". The International Journal of Neuropsychopharmacology. 16 (3): 557–74. doi: 10.1017/S1461145712000740 . PMID   22932229.
  42. Eapen V, Gururaj AK (2005). "Risperidone treatment in 12 children with developmental disorders and attention-deficit/hyperactivity disorder". Primary Care Companion to the Journal of Clinical Psychiatry. 7 (5): 221–224. doi:10.4088/pcc.v07n0502. PMC   1257406 . PMID   16308577.
  43. Armenteros JL, Lewis JE, Davalos M (May 2007). "Risperidone augmentation for treatment-resistant aggression in attention-deficit/hyperactivity disorder: a placebo-controlled pilot study". Journal of the American Academy of Child and Adolescent Psychiatry. 46 (5): 558–565. doi:10.1097/chi.0b013e3180323354. PMID   17450046.
  44. Biederman J, Hammerness P, Doyle R, Joshi G, Aleardi M, Mick E (February 2008). "Risperidone treatment for ADHD in children and adolescents with bipolar disorder". Neuropsychiatric Disease and Treatment. 4 (1): 203–207. doi: 10.2147/ndt.s1992 . PMC   2515893 . PMID   18728799.
  45. Joint Formulary Committee. British National Formulary (online) London: BMJ Group and Pharmaceutical Press http://www.medicinescomplete.com Archived 10 June 2021 at the Wayback Machine [Accessed on 2 February 2020]
  46. Divac N, Prostran M, Jakovcevski I, Cerovac N (2014). "Second-generation antipsychotics and extrapyramidal adverse effects". BioMed Research International. 2014: 656370. doi: 10.1155/2014/656370 . PMC   4065707 . PMID   24995318.
  47. 1 2 Pillay J, Boylan K, Carrey N, Newton A, Vandermeer B, Nuspl M, MacGregor T, Jafri SH, Featherstone R, Hartling L (March 2017). "First- and Second-Generation Antipsychotics in Children and Young Adults: Systematic Review Update". Comparative Effectiveness Reviews (184): ES–24. PMID   28749632. Report 17-EHC001-EF. Bookshelf ID: NBK442352. Compared with FGAs, SGAs may decrease the risk for experiencing any extrapyramidal symptom (EPS). FGAs probably cause lower gains in weight and BMI.
  48. Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, et al. (January 2020). "Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis". The Lancet. Psychiatry. 7 (1): 64–77. doi:10.1016/S2215-0366(19)30416-X. PMC   7029416 . PMID   31860457.
  49. BMJ Group, ed. (March 2009). "4.2.1". British National Formulary (57 ed.). United Kingdom: Royal Pharmaceutical Society of Great Britain. p. 192. ISSN   0260-535X. Withdrawal of antipsychotic drugs after long-term therapy should always be gradual and closely monitored to avoid the risk of acute withdrawal syndromes or rapid relapse.
  50. Wang JS, Ruan Y, Taylor RM, Donovan JL, Markowitz JS, DeVane CL (December 2004). "The brain entry of risperidone and 9-hydroxyrisperidone is greatly limited by P-glycoprotein". The International Journal of Neuropsychopharmacology. 7 (4): 415–419. doi:10.1017/S1461145704004390. PMID   15683552.
  51. Gurley BJ, Swain A, Williams DK, Barone G, Battu SK (July 2008). "Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: comparative effects of St. John's wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics". Molecular Nutrition & Food Research. 52 (7): 772–779. doi:10.1002/mnfr.200700081. PMC   2562898 . PMID   18214850.
  52. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC   10851641 . PMID   37982394.
  53. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (December 1998). "Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action". NeuroReport. 9 (17): 3897–3902. doi:10.1097/00001756-199812010-00024. PMID   9875725.
  54. "PDSP Datatbase". National Institute of Mental Health. ChapelHill (NC): University of North Carolina. Archived from the original on 8 November 2013. Retrieved 16 May 2016.
  55. Bender AM, Parr LC, Livingston WB, Lindsley CW, Merryman WD (August 2023). "2B Determined: The Future of the Serotonin Receptor 2B in Drug Discovery". J Med Chem. 66 (16): 11027–11039. doi:10.1021/acs.jmedchem.3c01178. PMC   11073569 . PMID   37584406.
  56. Smith C, Rahman T, Toohey N, Mazurkiewicz J, Herrick-Davis K, Teitler M (October 2006). "Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor". Molecular Pharmacology. 70 (4): 1264–70. doi:10.1124/mol.106.024612. PMID   16870886. S2CID   1678887.
  57. 1 2 3 4 Brunton L, Chabner B, Knollman B. Goodman and Gilman's The Pharmacological Basis of Therapeutics, Twelfth Edition. McGraw Hill Professional; 2010.
  58. Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP, et al. (July 2010). "The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia". Journal of Psychopharmacology. 24 (7): 1055–67. doi:10.1177/0269881109102644. PMID   19329549. S2CID   39050369.
  59. Hecht EM, Landy DC (February 2012). "Alpha-2 receptor antagonist add-on therapy in the treatment of schizophrenia; a meta-analysis". Schizophrenia Research. 134 (2–3): 202–6. doi:10.1016/j.schres.2011.11.030. PMID   22169246. S2CID   36119981.
  60. Brauner JM, Hessler S, Groemer TW, Alzheimer C, Huth T (April 2014). "Risperidone inhibits voltage-gated sodium channels". European Journal of Pharmacology. 728: 100–106. doi:10.1016/j.ejphar.2014.01.062. PMID   24508524.
  61. "The DrugBank database". Archived from the original on 17 November 2011.
  62. Parent M, Toussaint C, Gilson H (1983). "Long-term treatment of chronic psychotics with bromperidol decanoate: clinical and pharmacokinetic evaluation". Current Therapeutic Research. 34 (1): 1–6.
  63. 1 2 Jørgensen A, Overø KF (1980). "Clopenthixol and flupenthixol depot preparations in outpatient schizophrenics. III. Serum levels". Acta Psychiatrica Scandinavica. Supplementum. 279: 41–54. doi:10.1111/j.1600-0447.1980.tb07082.x. PMID   6931472.
  64. 1 2 Reynolds JE (1993). "Anxiolytic sedatives, hypnotics and neuroleptics.". Martindale: The Extra Pharmacopoeia (30th ed.). London: Pharmaceutical Press. pp. 364–623.
  65. Ereshefsky L, Saklad SR, Jann MW, Davis CM, Richards A, Seidel DR (May 1984). "Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches". The Journal of Clinical Psychiatry. 45 (5 Pt 2): 50–9. PMID   6143748.
  66. 1 2 Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA (April 1979). "Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man". British Journal of Clinical Pharmacology. 7 (4): 325–31. doi:10.1111/j.1365-2125.1979.tb00941.x. PMC   1429660 . PMID   444352.
  67. Young D, Ereshefsky L, Saklad SR, Jann MW, Garcia N (1984). Explaining the pharmacokinetics of fluphenazine through computer simulations. (Abstract.). 19th Annual Midyear Clinical Meeting of the American Society of Hospital Pharmacists. Dallas, Texas.
  68. Janssen PA, Niemegeers CJ, Schellekens KH, Lenaerts FM, Verbruggen FJ, van Nueten JM, Marsboom RH, Hérin VV, Schaper WK (November 1970). "The pharmacology of fluspirilene (R 6218), a potent, long-acting and injectable neuroleptic drug". Arzneimittel-Forschung. 20 (11): 1689–98. PMID   4992598.
  69. Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in psychosis". Drugs. 33 (1): 31–49. doi:10.2165/00003495-198733010-00002. PMID   3545764.
  70. Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year follow-up". International Pharmacopsychiatry. 17 (4): 238–46. doi:10.1159/000468580. PMID   7185768.
  71. Larsson M, Axelsson R, Forsman A (1984). "On the pharmacokinetics of perphenazine: a clinical study of perphenazine enanthate and decanoate". Current Therapeutic Research. 36 (6): 1071–88.
  72. "Electronic Orange Book". Food and Drug Administration. April 2007. Archived from the original on 19 August 2007. Retrieved 24 May 2007.
  73. "FDA approves the first drug to treat irritability associated with autism, Risperdal" (Press release). FDA. 6 October 2006. Archived from the original on 28 August 2009. Retrieved 14 August 2009.
  74. Scahill L (July 2008). "How do I decide whether or not to use medication for my child with autism? Should I try behavior therapy first?". Journal of Autism and Developmental Disorders. 38 (6): 1197–8. doi:10.1007/s10803-008-0573-7. PMID   18463973. S2CID   20767044.
  75. "Okedi: Pending EC decision". European Medicines Agency. 15 December 2021. Archived from the original on 17 December 2021. Retrieved 18 December 2021. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  76. "Okedi Product information". Union Register of medicinal products. Archived from the original on 4 March 2023. Retrieved 3 March 2023.
  77. Muskal M (11 April 2012). "Companies belittled risks of Risperdal, slapped with huge fine". Los Angeles Times. Archived from the original on 12 April 2012. Retrieved 15 July 2023.
  78. Thomas K (20 March 2014). "Arkansas Court Reverses $1.2 Billion Judgment Against Johnson & Johnson". The New York Times . Archived from the original on 5 November 2015.
  79. "NY AG: Janssen pays $181M over drug marketing". The Seattle Times. 30 August 2012. Archived from the original on 7 April 2016.
  80. "Johnson & Johnson to Pay More Than $2.2 Billion to Resolve Criminal and Civil Investigations" (Press release). Department of Justice, Office of Public Affairs. 4 November 2013. Archived from the original on 5 March 2015. Retrieved 23 December 2020.
  81. Ashbrook T (22 September 2015). "Johnson & Johnson And The Big Lies Of Big Pharma". On Point . Archived from the original on 22 November 2016.
  82. Brill S (September 2015). "America's Most Admired Lawbreaker". The Huffington Post . Archived from the original on 2 October 2015.
  83. Feeley J (1 July 2016). "J&J Hit With $70 Million Risperdal Verdict Over Male Breasts". Bloomberg News. Archived from the original on 7 May 2017.
  84. 1 2 "Jury says J&J must pay $8 billion in case over male breast growth linked to Risperdal". Reuters. 9 October 2019. Archived from the original on 9 October 2019. Retrieved 9 October 2019.
  85. Stempel, Jonathan (17 January 2020). "Judge slashes $8 billion Risperdal award against Johnson & Johnson to $6.8 million". Reuters. Retrieved 20 May 2024.
  86. "Risperidone: MedlinePlus Drug Information". medlineplus.gov. Archived from the original on 25 September 2020. Retrieved 28 September 2020.

Further reading

Commons-logo.svg Media related to Risperidone at Wikimedia Commons