Bunitrolol

Last updated
Bunitrolol
Bunitrolol.svg
Names
IUPAC name
2-[3-(tert-Butylamino)-2-hydroxypropoxy]benzonitrile
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C14H20N2O2/c1-14(2,3)16-9-12(17)10-18-13-7-5-4-6-11(13)8-15/h4-7,12,16-17H,9-10H2,1-3H3
    Key: VCVQSRCYSKKPBA-UHFFFAOYSA-N
  • InChI=1/C14H20N2O2/c1-14(2,3)16-9-12(17)10-18-13-7-5-4-6-11(13)8-15/h4-7,12,16-17H,9-10H2,1-3H3
    Key: VCVQSRCYSKKPBA-UHFFFAOYAU
  • CC(C)(C)NCC(COC1=CC=CC=C1C#N)O
Properties
C14H20N2O2
Molar mass 248.326 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Bunitrolol is a beta-adrenergic antagonist. [1]

Synthesis

Bunitrolol synthesis.svg

2-Hydroxybenzonitrile (1) is treated with epichlorohydrin and sodium hydroxide to give the epoxide (2). Addition of tert-butylamine completes the synthesis of bunitrolol. [2]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Cytoplasm</span> All of the contents of a eukaryotic cell except the nucleus

In cell biology, the cytoplasm describes all material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. The main components of the cytoplasm are the cytosol, the organelles, and various cytoplasmic inclusions. The cytoplasm is about 80% water and is usually colorless.

<span class="mw-page-title-main">Metabolism</span> Set of chemical reactions in organisms

Metabolism is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary metabolism.

<span class="mw-page-title-main">Metabolic pathway</span> Linked series of chemical reactions occurring within a cell

In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell.

<span class="mw-page-title-main">Metabolic syndrome</span> Medical condition

Metabolic syndrome is a clustering of at least three of the following five medical conditions: abdominal obesity, high blood pressure, high blood sugar, high serum triglycerides, and low serum high-density lipoprotein (HDL).

<span class="mw-page-title-main">Biological interaction</span> Effect that organisms have on other organisms

In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species, or of different species. These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship.

<span class="mw-page-title-main">Systems biology</span> Computational and mathematical modeling of complex biological systems

Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach to biological research.

In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, catalytic activity of their own, defense, and interactions with other organisms.

<span class="mw-page-title-main">Mevalonate pathway</span> Series of interconnected biochemical reactions

The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are used to make isoprenoids, a diverse class of over 30,000 biomolecules such as cholesterol, vitamin K, coenzyme Q10, and all steroid hormones.

<span class="mw-page-title-main">Metabolic disorder</span> Medical condition

A metabolic disorder is a disorder that negatively alters the body's processing and distribution of macronutrients, such as proteins, fats, and carbohydrates. Metabolic disorders can happen when abnormal chemical reactions in the body alter the normal metabolic process. It can also be defined as inherited single gene anomaly, most of which are autosomal recessive.

<span class="mw-page-title-main">Metabolic network</span> Set of biological pathways

A metabolic network is the complete set of metabolic and physical processes that determine the physiological and biochemical properties of a cell. As such, these networks comprise the chemical reactions of metabolism, the metabolic pathways, as well as the regulatory interactions that guide these reactions.

<span class="mw-page-title-main">Metabolic rift</span> Marxist conception of capitalist ecological crisis

Metabolic rift is a theory of ecological crisis tendencies under the capitalist mode of production that sociologist John Bellamy Foster ascribes to Karl Marx. Quoting Marx, Foster defines this as the "irreparable rift in the interdependent process of social metabolism". Foster argues that Marx theorized a rupture in the metabolic interaction between humanity and the rest of nature emanating from capitalist agricultural production and the growing division between town and country.

<span class="mw-page-title-main">KEGG</span> Collection of bioinformatics databases

KEGG is a collection of databases dealing with genomes, biological pathways, diseases, drugs, and chemical substances. KEGG is utilized for bioinformatics research and education, including data analysis in genomics, metagenomics, metabolomics and other omics studies, modeling and simulation in systems biology, and translational research in drug development.

The non-mevalonate pathway—also appearing as the mevalonate-independent pathway and the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathway—is an alternative metabolic pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The currently preferred name for this pathway is the MEP pathway, since MEP is the first committed metabolite on the route to IPP.

In chemistry, the term substrate is highly context-dependent. Broadly speaking, it can refer either to a chemical species being observed in a chemical reaction, or to a surface on which other chemical reactions or microscopy are performed.

<span class="mw-page-title-main">Rev-ErbA beta</span> Protein-coding gene in the species Homo sapiens

Rev-Erb beta (Rev-Erbβ), also known as nuclear receptor subfamily 1 group D member 2 (NR1D2), is a member of the Rev-Erb protein family. Rev-Erbβ, like Rev-Erbα, belongs to the nuclear receptor superfamily of transcription factors and can modulate gene expression through binding to gene promoters. Together with Rev-Erbα, Rev-Erbβ functions as a major regulator of the circadian clock. These two proteins are partially redundant. Current research suggests that Rev-Erbβ is less important in maintaining the circadian clock than Rev-Erbα; knock-out studies of Rev-Erbα result in significant circadian disruption but the same has not been found with Rev-Erbβ. Rev-Erbβ compensation for Rev-Erbα varies across tissues, and further research is needed to elucidate the separate role of Rev-Erbβ.

<span class="mw-page-title-main">NRF1</span> Protein-coding gene in the species Homo sapiens

Nuclear respiratory factor 1, also known as Nrf1, Nrf-1, NRF1 and NRF-1, encodes a protein that homodimerizes and functions as a transcription factor which activates the expression of some key metabolic genes regulating cellular growth and nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. The protein has also been associated with the regulation of neurite outgrowth. Alternate transcriptional splice variants, which encode the same protein, have been characterized. Additional variants encoding different protein isoforms have been described but they have not been fully characterized. Confusion has occurred in bibliographic databases due to the shared symbol of NRF1 for this gene and for "nuclear factor -like 1" which has an official symbol of NFE2L1.

Receptor protein serine/threonine kinases are enzyme-linked receptors that belong to protein-serine/threonine kinases. The systematic name of this enzyme class is ATP:[receptor-protein] phosphotransferase. Proteins from this group participate in 7 metabolic pathways: MAPK signaling pathway, cytokine-cytokine receptor interaction, TGF beta signaling pathway, adherens junction, colorectal cancer, pancreatic cancer, and chronic myeloid leukemia.

<span class="mw-page-title-main">Epanolol</span> Chemical compound

Epanolol is a beta blocker.

The PageRank algorithm has several applications in biochemistry.

Network medicine is the application of network science towards identifying, preventing, and treating diseases. This field focuses on using network topology and network dynamics towards identifying diseases and developing medical drugs. Biological networks, such as protein-protein interactions and metabolic pathways, are utilized by network medicine. Disease networks, which map relationships between diseases and biological factors, also play an important role in the field. Epidemiology is extensively studied using network science as well; social networks and transportation networks are used to model the spreading of disease across populations. Network medicine is a medically focused area of systems biology.

References

  1. Haddad, S; Poulin, P; Funk, C (2010). "Extrapolating in vitro metabolic interactions to isolated perfused liver: Predictions of metabolic interactions between R-bufuralol, bunitrolol, and debrisoquine". Journal of Pharmaceutical Sciences. 99 (10): 4406–26. doi:10.1002/jps.22136. PMID   20310018.
  2. Herbert Koppe, Albrecht Engelhardt, Karl Zeile, U.S. patent 3,940,489 (1976 to Boehringer Ingelheim Gmbh).