Vibegron

Last updated

Vibegron
Vibegron.svg
Clinical data
Trade names Gemtesa
Other namesKRP-114V, MK-4618, RVT-901, URO-901
AHFS/Drugs.com Monograph
License data
Routes of
administration
By mouth
Drug class Beta3 adrenergic receptor agonist
ATC code
Legal status
Legal status
Pharmacokinetic data
Protein binding 49.6 to 51.3% is bound to plasma proteins [4]
Metabolism Predominantly oxidation and glucuronidation [4]
Elimination half-life 60 to 70 hours [4]
Excretion 59% feces (54% of this is in the unchanged parent drug form), 20% urine (19% of this is in the unchanged parent drug form) [1]
Identifiers
  • (6S)-N-[4-[[(2S,5R)-5-[(R)-hydroxy(phenyl)methyl]pyrrolidin-2-yl]methyl]phenyl]-4-oxo-7,8-dihydro-6H-pyrrolo[1,2-a]pyrimidine-6-carboxamide
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.210.547 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C26H28N4O3
Molar mass 444.535 g·mol−1
3D model (JSmol)
  • O=C(Nc1ccc(C[C@@H]2CC[C@H]([C@H](O)c3ccccc3)N2)cc1)[C@@H]1CCc2nccc(=O)n21
  • InChI=1S/C26H28N4O3/c31-24-14-15-27-23-13-12-22(30(23)24)26(33)29-19-8-6-17(7-9-19)16-20-10-11-21(28-20)25(32)18-4-2-1-3-5-18/h1-9,14-15,20-22,25,28,32H,10-13,16H2,(H,29,33)/t20-,21+,22-,25+/m0/s1
  • Key:DJXRIQMCROIRCZ-XOEOCAAJSA-N

Vibegron, sold under the brand name Gemtesa, is a medication for the treatment of overactive bladder. [1] [5] [6] Vibegron is a selective beta-3 adrenergic receptor agonist. [1]

Contents

The most common side effects include headache, urinary tract infection, common cold, diarrhea, nausea, and upper respiratory tract infection. [5]

Vibegron was first discovered by scientists at Merck & Co. Inc. [7] and was later developed in Japan by Kyorin Pharmaceutical Co., Ltd, Kissei Pharmaceutical Co., Ltd, and Urovant Sciences. [8] It was approved for medical use in Japan in September 2018, [8] in the United States in December 2020, [1] [5] [6] and in the European Union in June 2024. [2]

Efficacy

Vibegron, once daily 75 mg provided significant reduction in micturition, urgency episodes and urge incontinence, and increased the volume per micturition. [9]

Medical uses

Vibegron is indicated for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and urinary frequency in adults. [1] [5] [6]

Safety

Generally, the introduction of β3 adrenergic receptors agonists such as vibegron has improved overactive bladder (OAB) management by minimizing anticholinergic-related adverse effects. [10] Monotherapy with a β3 adrenergic agonist may be preferred in older patients, those with high anticholinergic burden, and older adults with multiple comorbidities. [11] An ambulatory blood pressure monitoring study showed that treatment with vibegron was not associated with clinically meaningful effects on blood pressure or heart rate. Treatment with vibegron was also associated with improvements in patient-reported measures of quality of life. Vibegron was generally effective, safe and well tolerated, thus represents a valuable treatment option for patients with OAB. [12]

Adverse effects

The most common side effects of vibegron are dry mouth, constipation, headache, nasopharyngitis, diarrhea, nausea, bronchitis, urinary tract infection and upper respiratory tract infection. In case of urinary retention, the patient should stop using the drug. Risk assessment for the drug in pregnant people has yet to be evaluated. [1]

Interactions

Vibegron is, in contrast to other OAB drugs, very selective and leads to a lesser degree of unwanted side effects. Vibegron is found to be a substrate for CYP3A4 in vivo, but does not actually induce or inhibit any of the cytochrome P450 enzymes and is thus less likely to take part in drug–drug interactions (DDI). Here vibegron differs from the previous overactive bladder drug mirabegron, which was known to be associated in various drug–drug interactions by inhibiting CYP2D6 or inducing CYP3A4, CYP2D6 and CYP2C9 in the liver. [13] [4] [14] [15] [16] [17]

Using vibegron only (monotherapy) has positive effects on OAB and UUI, but a combination with other drugs can have additional effects. In a study with antimuscarinic drugs, more DDIs were investigated using a model of rhesus monkeys. Dose combinations of vibegron and tolterodine showed increased bladder capacity, the effects of both drugs at low doses strengthened each other, known as synergism. The addition of darifenacin to vibegron created greater bladder relaxation only when used at high doses. [18] Additionally, co-administration with imidafenacin shows an increase in bladder capacity and voided volume in comparison to monotherapy. [18] Possibly, a widely adapted treatment will be the combination of beta-3-adrenergic agonist with a nonselective M2/M3 antagonist as the most prevalent option. [4]

Clinical studies show no significant drug–drug interaction, aside from a serum concentration increase of digoxin when taken with vibegron. Maximal concentrations and systemic exposure (Cmax and area under the curve (AUC)) of digoxin are both increased as a result of DDI. [19] [1] Apart from the no to little DDIs, vibegron has an additional safety quality in that it does not cross the blood-brain barrier and therefore does not induce cognitive impairment. [4] Furthermore, vibegron can be taken with or without food, this does not have an effect on vibegron plasma concentrations. [1] [19]

Pharmacology

Mechanism of action

Vibegron is a selective agonist for the beta-3 adrenergic receptor. The receptors are located in the kidneys, urinary tract and bladder tissue. [20] Upon binding, the β3 receptor undergoes a conformational change. This induces the activation of adenylate cyclases via G proteins and thereby promotes the formation of cyclic adenosine monophosphate (cAMP). The consequence of this cascade is an increased intracellular cAMP concentration, which triggers activation of cAMP-dependent protein kinase A and causes a reduction of Ca2+ concentration in the cytoplasm. The kinase then phosphorylates myosin chains and thereby inhibits muscle contraction. [4]

The final effect of vibegron is muscle relaxation in the bladder. Due to this muscle relaxation, bladder capacity increases and symptoms of overactive bladder are relieved. [17]

Pharmacokinetics

The two main metabolic pathways are the oxidation and glucuronidation of vibegron. Two oxidative metabolites and three glucuronide metabolites can be formed. The exact structure of these metabolites have not been studied yet. [4] In vitro, CYP3A4 is the enzyme responsible for the metabolism of vibegron, facilitating oxidative metabolism. Eventually, still a large part of the unmodified drug is excreted through feces and urine. [1]

History

The beta-3 adrenergic receptor (beta3AR) was discovered in the late 1980s [20] and initially, beta3AR agonists were investigated as treatment for obesity and diabetes. [21] A number of compounds were tested in clinical trials but didn't show sufficient benefits in these areas. [21]

A phase IIb global trial completed in 2013 of 1395 patients, of which 89.7% were women and 63.3% had not been treated previously, demonstrated a significant decrease in daily micturitions and urgent urinary incontinence episodes upon administration of vibegron. [22] [13]

An international phase III trial of 506 participants completed in 2019 found statistically significant efficacy of vibegron after two weeks of daily administration. The adverse effect rates in participants treated with vibegron were comparable to those in participants who received a placebo. [23]

Vibegron was evaluated in patients with OAB in several clinical studies. A large active-controlled study, called Empower, showed the beneficial effects of the drug to treat the condition and UUI. [1] [4] Primary outcomes of different clinical trials showed there was an overall increase in efficacy. These outcomes concluded that there was a reduction in urgency to urinate, a decrease in micturitions and an increase in average volume voided per micturition. [1] There is also an improvement observed of the symptoms when vibegron is administered over a longer period (52 weeks) concluding that it is effective and safe for longer use. [17] In severe patients, increasing the dose was accompanied by similar beneficial effects when there was first a lack of these. [24] Quality of life of the patients is improved, including a reduction of nocturia. [17]

Society and culture

Vibegron was developed in Japan by Kyorin Pharmaceutical Co., Ltd, Kissei Pharmaceutical Co., Ltd, and Urovant Sciences. [8] It was approved for medical use in Japan in September 2018, [8] and in the United States in December 2020. [1] [5] [6]

In April 2024, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency adopted a positive opinion, recommending the granting of a marketing authorization for the medicinal product Obgemsa, intended for the symptomatic treatment of adults with overactive bladder (OAB) syndrome. [2] [25] The applicant for this medicinal product is Pierre Fabre Medicament. [2] Vibegron was approved for medical use in the European Union in June 2024. [2]

Names

Vibegron is the international nonproprietary name. [26]

Veterinary uses

Pregnant rats were given very high daily oral doses of vibegron during the period of organogenesis and showed no embryo-fetal developmental toxicity up to 300 mg/kg/day. Similar data was found in rabbits. Maternal toxicity was observed when doses exceeded 100 mg/kg/day in lactating rats. Clinical studies show that vibegron is not toxic, safe and well-tolerated in patients. [1]

Related Research Articles

<span class="mw-page-title-main">Benign prostatic hyperplasia</span> Noncancerous increase in size of the prostate gland

Benign prostatic hyperplasia (BPH), also called prostate enlargement, is a noncancerous increase in size of the prostate gland. Symptoms may include frequent urination, trouble starting to urinate, weak stream, inability to urinate, or loss of bladder control. Complications can include urinary tract infections, bladder stones, and chronic kidney problems.

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

<span class="mw-page-title-main">Prazosin</span> Antihypertensive drug

Prazosin, sold under the brand name Minipress among others, is a medication used to treat high blood pressure, symptoms of an enlarged prostate, and nightmares related to post-traumatic stress disorder (PTSD). It is an α1 blocker. It is a less preferred treatment of high blood pressure. Other uses may include heart failure and Raynaud syndrome. It is taken by mouth.

Alpha-1 blockers constitute a variety of drugs that block the effect of catecholamines on alpha-1-adrenergic receptors. They are mainly used to treat benign prostatic hyperplasia (BPH), hypertension and post-traumatic stress disorder. Alpha-1-adrenergic receptors are present in vascular smooth muscle, the central nervous system, and other tissues. When alpha blockers bind to these receptors in vascular smooth muscle, they cause vasodilation.

Percutaneous tibial nerve stimulation (PTNS), also referred to as posterior tibial nerve stimulation, is the least invasive form of neuromodulation used to treat overactive bladder (OAB) and the associated symptoms of urinary urgency, urinary frequency and urge incontinence. These urinary symptoms may also occur with interstitial cystitis and following a radical prostatectomy. Outside the United States, PTNS is also used to treat fecal incontinence.

alpha-1 (α1) adrenergic receptors are G protein-coupled receptors (GPCRs) associated with the Gq heterotrimeric G protein. α1-adrenergic receptors are subdivided into three highly homologous subtypes, i.e., α1A-, α1B-, and α1D-adrenergic receptor subtypes. There is no α1C receptor. At one time, there was a subtype known as α1C, but it was found to be identical to the previously discovered α1A receptor subtype. To avoid confusion, naming was continued with the letter D. Catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) signal through the α1-adrenergic receptors in the central and peripheral nervous systems. The crystal structure of the α1B-adrenergic receptor subtype has been determined in complex with the inverse agonist (+)-cyclazosin.

<span class="mw-page-title-main">Nebivolol</span> Chemical compound

Nebivolol is a beta blocker used to treat high blood pressure and heart failure. As with other β-blockers, it is generally a less preferred treatment for high blood pressure. It may be used by itself or with other blood pressure medication. It is taken by mouth.

<span class="mw-page-title-main">Solifenacin</span> Chemical compound

Solifenacin, sold as the brand name Vesicare among others, is a medicine used to treat overactive bladder and neurogenic detrusor overactivity (NDO). It may help with incontinence, urinary frequency, and urinary urgency.

<span class="mw-page-title-main">Detrusor muscle</span> Muscle of the bladder which expels urine when it contracts

The detrusor muscle, also detrusor urinae muscle, muscularis propria of the urinary bladder and muscularis propria, is smooth muscle found in the wall of the bladder. The detrusor muscle remains relaxed to allow the bladder to store urine, and contracts during urination to release urine. Related are the urethral sphincter muscles which envelop the urethra to control the flow of urine when they contract.

<span class="mw-page-title-main">Overactive bladder</span> Condition where a person has a frequent need to urinate

Overactive bladder (OAB) is a common condition where there is a frequent feeling of needing to urinate to a degree that it negatively affects a person's life. The frequent need to urinate may occur during the day, at night, or both. Loss of bladder control may occur with this condition. This condition is also sometimes characterized by a sudden and involuntary contraction of the bladder muscles, in response to excitement or anticipation. This in turn leads to a frequent and urgent need to urinate.

<span class="mw-page-title-main">Beta-3 adrenergic receptor</span> Mammalian protein found in Homo sapiens

The beta-3 adrenergic receptor3-adrenoceptor), also known as ADRB3, is a beta-adrenergic receptor, and also denotes the human gene encoding it.

Solabegron is a drug which acts as a selective agonist for the β3 adrenergic receptor. It is being developed for the treatment of overactive bladder and irritable bowel syndrome. It has been shown to produce visceral analgesia by releasing somatostatin from adipocytes.

<span class="mw-page-title-main">Alpha blocker</span> Class of pharmacological agents

Alpha blockers, also known as α-blockers or α-adrenoreceptor antagonists, are a class of pharmacological agents that act as antagonists on α-adrenergic receptors (α-adrenoceptors).

<span class="mw-page-title-main">Pomaglumetad</span> Drug, used as a treatment for schizophrenia

Pomaglumetad (LY-404,039) is an amino acid analog drug that acts as a highly selective agonist for the metabotropic glutamate receptor group II subtypes mGluR2 and mGluR3. Pharmacological research has focused on its potential antipsychotic and anxiolytic effects. Pomaglumetad is intended as a treatment for schizophrenia and other psychotic and anxiety disorders by modulating glutamatergic activity and reducing presynaptic release of glutamate at synapses in limbic and forebrain areas relevant to these disorders. Human studies investigating therapeutic use of pomaglumetad have focused on the prodrug LY-2140023, a methionine amide of pomaglumetad (also called pomaglumetad methionil) since pomaglumetad exhibits low oral absorption and bioavailability in humans.

<span class="mw-page-title-main">Besipirdine</span> Chemical compound

Besipirdine, an indole-substituted analog of 4-aminopyridine, is a nootropic drug developed for the treatment of Alzheimer's disease (AD).

Mirabegron, sold under the brand name Myrbetriq among others, is a medication used to treat overactive bladder. Its benefits are similar to antimuscarinic medication such as solifenacin or tolterodine. It is taken by mouth.

<span class="mw-page-title-main">Serlopitant</span> Chemical compound

Serlopitant (INN, codenamed VPD-737) is a drug which acts as an NK1 receptor antagonist. It was assessed in clinical trials for the treatment of urinary incontinence and overactive bladder, but while it was superior to placebo it provided no advantage over existing approved drugs, and was not approved for further development for this indication. Serlopitant is now undergoing clinical trials for the treatment of chronic pruritus (itch)

<span class="mw-page-title-main">Brilaroxazine</span> Experimental atypical antipsycotic

Brilaroxazine, also known as oxaripiprazole, is an investigational atypical antipsychotic which is under development by Reviva Pharmaceuticals for the treatment of neuropsychiatric and inflammatory disorders. It has currently completed the first of two phase III clinical trials for schizophrenia. Reviva Pharmaceuticals also intends to investigate brilaroxazine for the treatment of bipolar disorder, major depressive disorder, attention deficit hyperactivity disorder (ADHD), irritability in autism, tics, psychosis/agitation associated with Alzheimer's disease, Parkinson's disease psychosis, as well as the inflammatory disorders pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), and psoriasis. The FDA granted brilaroxazine orphan drug designation for the treatment of PAH and IPF.

The β3 adrenergic receptor agonist or β3-adrenoceptor agonist, also known as β3-AR agonist, are a class of medicine that bind selectively to β3-adrenergic receptors.

Autonomic drugs are substances that can either inhibit or enhance the functions of the parasympathetic and sympathetic nervous systems. This type of drug can be used to treat a wide range of diseases an disorders, including glaucoma, asthma, and disorders of the urinary, gastrointestinal and circulatory systems.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "Gemtesa- vibegron tablet, film coated". DailyMed. Archived from the original on 14 January 2021. Retrieved 12 January 2021.
  2. 1 2 3 4 5 "Obgemsa EPAR". European Medicines Agency . 25 April 2024. Archived from the original on 5 July 2024. Retrieved 27 April 2024. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  3. "Obgemsa PI". Union Register of medicinal products. 28 June 2024. Retrieved 5 July 2024.
  4. 1 2 3 4 5 6 7 8 9 Rechberger T, Wróbel A (January 2021). "Evaluating vibegron for the treatment of overactive bladder". Expert Opinion on Pharmacotherapy. 22 (1): 9–17. doi:10.1080/14656566.2020.1809652. PMID   32993398. S2CID   222166213.
  5. 1 2 3 4 5 "Drug Trials Snapshot: Gemtesa". U.S. Food and Drug Administration (FDA). 23 December 2020. Archived from the original on 12 January 2021. Retrieved 12 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. 1 2 3 4 "Sumitovant Biopharma Announces Urovant Sciences Receives U.S. FDA Approval of Gemtesa (vibegron) 75 mg Tablets for the Treatment of Patients with Overactive Bladder (OAB)" (Press release). Sumitovant Biopharma. 23 December 2020. Archived from the original on 5 July 2024. Retrieved 23 December 2020 via GlobeNewswire.
  7. US8247415B2 https://patents.google.com/patent/US8247415
  8. 1 2 3 4 Keam SJ (November 2018). "Vibegron: First Global Approval". Drugs. 78 (17): 1835–1839. doi:10.1007/s40265-018-1006-3. PMID   30411311. S2CID   53212220.
  9. Staskin D, Frankel J, Varano S, Shortino D, Jankowich R, Mudd PN (August 2020). "International Phase III, Randomized, Double-Blind, Placebo and Active Controlled Study to Evaluate the Safety and Efficacy of Vibegron in Patients with Symptoms of Overactive Bladder: EMPOWUR". The Journal of Urology. 204 (2): 316–324. doi:10.1097/ju.0000000000000807. PMID   32068484. S2CID   211161769.
  10. Kelleher C, Hakimi Z, Zur R, Siddiqui E, Maman K, Aballéa S, et al. (September 2018). "Efficacy and Tolerability of Mirabegron Compared with Antimuscarinic Monotherapy or Combination Therapies for Overactive Bladder: A Systematic Review and Network Meta-analysis". European Urology. 74 (3): 324–333. doi: 10.1016/j.eururo.2018.03.020 . PMID   29699858.{{cite journal}}: CS1 maint: overridden setting (link)
  11. Kennelly MJ, Rhodes T, Girman CJ, Thomas E, Shortino D, Mudd PN (November 2021). "Efficacy of Vibegron and Mirabegron for Overactive Bladder: A Systematic Literature Review and Indirect Treatment Comparison". Advances in Therapy. 38 (11): 5452–5464. doi:10.1007/s12325-021-01902-8. PMC   8520873 . PMID   34537953.
  12. Frankel J, Staskin D, Varano S, Kennelly MJ, Jankowich RA, Haag-Molkenteller C (March 2022). "An Evaluation of the Efficacy and Safety of Vibegron in the Treatment of Overactive Bladder". Therapeutics and Clinical Risk Management. 18: 171–182. doi: 10.2147/tcrm.s310371 . PMC   8901416 . PMID   35264853.
  13. 1 2 Mitcheson HD, Samanta S, Muldowney K, Pinto CA, Rocha BA, Green S, et al. (February 2019). "Vibegron (RVT-901/MK-4618/KRP-114V) Administered Once Daily as Monotherapy or Concomitantly with Tolterodine in Patients with an Overactive Bladder: A Multicenter, Phase IIb, Randomized, Double-blind, Controlled Trial". European Urology. 75 (2): 274–282. doi:10.1016/j.eururo.2018.10.006. PMID   30661513. S2CID   58547754.{{cite journal}}: CS1 maint: overridden setting (link)
  14. Stambakio H (2019). "AUA 2019: Once-Daily Vibegron, a Novel Oral β3 Agonist Does Not Inhibit CYP2D6, a Common Pathway For Drug Metabolism in Patients on OAB Medications". Archived from the original on 19 July 2021. Retrieved 2 March 2021.
  15. Bragg R, Hebel D, Vouri SM, Pitlick JM (December 2014). "Mirabegron: a Beta-3 agonist for overactive bladder". The Consultant Pharmacist. 29 (12): 823–37. doi:10.4140/TCP.n.2014.823. PMC   4605389 . PMID   25521658.
  16. Araklitis G, Baines G, da Silva AS, Robinson D, Cardozo L (11 September 2020). "Recent advances in managing overactive bladder". F1000Research. 9: 1125. doi: 10.12688/f1000research.26607.1 . PMC   7489273 . PMID   32968482.
  17. 1 2 3 4 Yoshida M, Takeda M, Gotoh M, Yokoyama O, Kakizaki H, Takahashi S, et al. (March 2019). "Efficacy of novel β3 -adrenoreceptor agonist vibegron on nocturia in patients with overactive bladder: A post-hoc analysis of a randomized, double-blind, placebo-controlled phase 3 study". International Journal of Urology. 26 (3): 369–375. doi:10.1111/iju.13877. PMC   6912249 . PMID   30557916.{{cite journal}}: CS1 maint: overridden setting (link)
  18. 1 2 Di Salvo J, Nagabukuro H, Wickham LA, Abbadie C, DeMartino JA, Fitzmaurice A, et al. (February 2017). "Pharmacological Characterization of a Novel Beta 3 Adrenergic Agonist, Vibegron: Evaluation of Antimuscarinic Receptor Selectivity for Combination Therapy for Overactive Bladder". The Journal of Pharmacology and Experimental Therapeutics. 360 (2): 346–355. doi: 10.1124/jpet.116.237313 . PMID   27965369.{{cite journal}}: CS1 maint: overridden setting (link)
  19. 1 2 "Vibegron (Rx)". Medscape. Archived from the original on 22 May 2022. Retrieved 2 March 2021.
  20. 1 2 Schena G, Caplan MJ (April 2019). "Everything You Always Wanted to Know about β3-AR * (* But Were Afraid to Ask)". Cells. 8 (4): 357. doi: 10.3390/cells8040357 . PMC   6523418 . PMID   30995798.
  21. 1 2 Edmondson SD, Zhu C, Kar NF, Di Salvo J, Nagabukuro H, Sacre-Salem B, et al. (January 2016). "Discovery of Vibegron: A Potent and Selective β3 Adrenergic Receptor Agonist for the Treatment of Overactive Bladder". Journal of Medicinal Chemistry. 59 (2): 609–23. doi:10.1021/acs.jmedchem.5b01372. PMID   26709102.{{cite journal}}: CS1 maint: overridden setting (link)
  22. Clinical trial number NCT01314872 for "A Study of the Efficacy and Safety of Vibegron (MK-4618) in Participants With Overactive Bladder (OAB) (MK-4618-008)" at ClinicalTrials.gov
  23. Clinical trial number NCT03583372 for "An Extension Study to Examine the Safety and Tolerability of a New Drug in Patients With Symptoms of Overactive Bladder (OAB). (Empowur) " at ClinicalTrials.gov
  24. Yoshida M, Takeda M, Gotoh M, Nagai S, Kurose T (May 2018). "Vibegron, a Novel Potent and Selective β3-Adrenoreceptor Agonist, for the Treatment of Patients with Overactive Bladder: A Randomized, Double-blind, Placebo-controlled Phase 3 Study". European Urology. 73 (5): 783–790. doi:10.1016/j.eururo.2017.12.022. PMID   29366513.
  25. "Meeting highlights from the Committee for Medicinal Products for Human Use (CHMP) 22-25 April 2024". European Medicines Agency (Press release). 26 April 2024. Archived from the original on 5 July 2024. Retrieved 13 June 2024.
  26. World Health Organization (2013). "International nonproprietary names for pharmaceutical substances (INN): recommended INN: list 70". WHO Drug Information. 27 (3): 318. hdl: 10665/331167 .