Pipamperone

Last updated

Pipamperone
Pipamperone.svg
Clinical data
Trade names Dipiperon
Other namesCarpiperone, floropipamide, fluoropipamide, floropipamide hydrochloride (JAN), McN-JR 3345; R-3345
AHFS/Drugs.com International Drug Names
Routes of
administration
Oral
ATC code
Legal status
Legal status
Pharmacokinetic data
Elimination half-life 17-22 hours
Duration of action 0.5-1 hour
Identifiers
  • 1-[4-(4-fluorophenyl)-4-oxobutyl]-4-piperidin-1-ylpiperidine-4-carboxamide
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.119.828 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C21H30FN3O2
Molar mass 375.488 g·mol−1
3D model (JSmol)
  • Fc1ccc(cc1)C(=O)CCCN3CCC(C(=O)N)(N2CCCCC2)CC3
  • InChI=1S/C21H30FN3O2/c22-18-8-6-17(7-9-18)19(26)5-4-12-24-15-10-21(11-16-24,20(23)27)25-13-2-1-3-14-25/h6-9H,1-5,10-16H2,(H2,23,27) Yes check.svgY
  • Key:AXKPFOAXAHJUAG-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Pipamperone (INN, USAN, BAN), sold under the brand name Dipiperon, is a typical antipsychotic of the butyrophenone family used in the treatment of schizophrenia [2] [3] and as a sleep aid for depression. [4] It is or has been marketed under brand names including Dipiperon, Dipiperal, Piperonil, Piperonyl, and Propitan. [3] Pipamperone was discovered at Janssen Pharmaceutica in 1961, and entered clinical trials in the United States in 1963. [5]

Contents

Medical uses

Pipamperone was developed for use as an antipsychotic in the treatment of schizophrenia.

Pipamperone might be useful as a hallucinogen antidote or "trip killer" in blocking the effects of serotonergic psychedelics like psilocybin. [6]

Pharmacology

Pipamperon Neuraxpharm, 40mg Pipamperon neuraxpharm 40mg by Danny S. - 001.JPG
Pipamperon Neuraxpharm, 40mg

Pipamperone acts as an antagonist of the 5-HT2A, [7] 5-HT2B, [8] 5-HT2C [9] D2, [7] D3, [10] D4, [7] [11] α1-adrenergic, [10] and α2-adrenergic receptors. [10] It shows much higher affinity for the 5-HT2A and D4 receptors over the D2 receptor (15-fold in the case of the D4 receptor, and even higher in the case of the 5-HT2A receptor), [7] [10] [12] being regarded as "highly selective" for the former two sites at low doses. [12] [13] Pipamperone has low and likely insignificant affinity for the H1 and mACh receptors, as well as for other serotonin and dopamine receptors. [10]

Pipamperone is considered to have been a forerunner to the atypical antipsychotics, if not an atypical antipsychotic itself, due to its prominent serotonin antagonism. [14] [15] [16] It is also used to normalise mood and sleep patterns and has antianxiety effects in neurotic patients. [17]

Affinity [18]
SitepKi
D15.61
D26.71
D36.58
D47.95
5 HT1A5.46
5 HT1B5.54
5 HT1D6.14
5 HT1E5.44
5 HT1F<5
5-HT2A8.19
5 HT55.35
5 HT76.26
α17.23
α2A6.15
α2B7.08
α2C6.25

Antidepressant effects

Low-dose pipamperone (5 mg twice daily) has been found to accelerate and enhance the antidepressant effect of citalopram (40 mg once daily), in a combination (citalopram/pipamperone) referred to as PipCit (code name PNB-01). [12] [19]

See also

Related Research Articles

<span class="mw-page-title-main">Atypical antipsychotic</span> Class of pharmaceutical drugs

The atypical antipsychotics (AAP), also known as second generation antipsychotics (SGAs) and serotonin–dopamine antagonists (SDAs), are a group of antipsychotic drugs largely introduced after the 1970s and used to treat psychiatric conditions. Some atypical antipsychotics have received regulatory approval for schizophrenia, bipolar disorder, irritability in autism, and as an adjunct in major depressive disorder.

<span class="mw-page-title-main">Risperidone</span> Antipsychotic medication

Risperidone, sold under the brand name Risperdal among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder, as well as irritability associated with autism. It is taken either by mouth or by injection. The injectable versions are long-acting and last for 2–4 weeks.

<span class="mw-page-title-main">Ziprasidone</span> Antipsychotic medication

Ziprasidone, sold under the brand name Geodon among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder. It may be used by mouth and by injection into a muscle (IM). The IM form may be used for acute agitation in people with schizophrenia.

<span class="mw-page-title-main">Pimozide</span> Chemical compound

Pimozide is a neuroleptic drug of the diphenylbutylpiperidine class. It was discovered at Janssen Pharmaceutica in 1963. It has a high potency compared to chlorpromazine. On a weight basis it is even more potent than haloperidol. It also has special indication for Tourette syndrome and resistant tics.

<span class="mw-page-title-main">Amoxapine</span> Tricyclic antidepressant medication

Amoxapine, sold under the brand name Asendin among others, is a tricyclic antidepressant (TCA). It is the N-demethylated metabolite of loxapine. Amoxapine first received marketing approval in the United States in 1980, approximately 10 to 20 years after most of the other TCAs were introduced in the United States.

<span class="mw-page-title-main">Chlorprothixene</span> Typical antipsychotic medication

Chlorprothixene, sold under the brand name Truxal among others, is a typical antipsychotic of the thioxanthene group.

<span class="mw-page-title-main">Ritanserin</span> Chemical compound

Ritanserin, also known by its developmental code name R-55667, is a serotonin antagonist medication described as an anxiolytic, antidepressant, antiparkinsonian agent, and antihypertensive agent. It was chiefly investigated as a drug to treat insomnia, especially to enhance sleep quality by significantly increasing slow wave sleep by virtue of potent and concomitant 5-HT2A and 5-HT2C receptor antagonism.

<span class="mw-page-title-main">Propiomazine</span> Chemical compound

Propiomazine, sold under the brand name Propavan among others, is an antihistamine which is used to treat insomnia and to produce sedation and relieve anxiety before or during surgery or other procedures and in combination with analgesics as well as during labor. Propiomazine is a phenothiazine, but is not used therapeutically as a neuroleptic because it does not block dopamine receptors well.

<span class="mw-page-title-main">Asenapine</span> Medication to treat schizophrenia

Asenapine, sold under the brand name Saphris among others, is an atypical antipsychotic medication used to treat schizophrenia and acute mania associated with bipolar disorder as well as the medium to long-term management of bipolar disorder.

<span class="mw-page-title-main">Cyamemazine</span> Antipsychotic medication

Cyamemazine (Tercian), also known as cyamepromazine, is a typical antipsychotic drug of the phenothiazine class which was introduced by Theraplix in France in 1972 and later in Portugal as well.

<span class="mw-page-title-main">Nemonapride</span> Antipsychotic medication

Nemonapride, also previously known as emonapride and sold under the brand name Emilace, is an atypical antipsychotic which is used in the treatment of schizophrenia. It is taken by mouth.

<span class="mw-page-title-main">Perospirone</span> Atypical antipsychotic medication

Perospirone (Lullan) is an atypical antipsychotic of the azapirone family. It was introduced in Japan by Dainippon Sumitomo Pharma in 2001 for the treatment of schizophrenia and acute cases of bipolar mania.

<span class="mw-page-title-main">Blonanserin</span> Atypical antipsychotic

Blonanserin, sold under the brand name Lonasen, is a relatively new atypical antipsychotic commercialized by Dainippon Sumitomo Pharma in Japan and Korea for the treatment of schizophrenia. Relative to many other antipsychotics, blonanserin has an improved tolerability profile, lacking side effects such as extrapyramidal symptoms, excessive sedation, or hypotension. As with many second-generation (atypical) antipsychotics it is significantly more efficacious in the treatment of the negative symptoms of schizophrenia compared to first-generation (typical) antipsychotics such as haloperidol.

<span class="mw-page-title-main">Pimavanserin</span> Atypical antipsychotic medication

Pimavanserin, sold under the brand name Nuplazid, is an atypical antipsychotic which is approved for the treatment of Parkinson's disease psychosis. It is taken by mouth.

<span class="mw-page-title-main">Tiospirone</span> Atypical antipsychotic drug

Tiospirone (BMY-13,859), also sometimes called tiaspirone or tiosperone, is an atypical antipsychotic of the azapirone class. It was investigated as a treatment for schizophrenia in the late 1980s and was found to have an effectiveness equivalent to those of typical antipsychotics in clinical trials but without causing extrapyramidal side effects. However, development was halted and it was not marketed. Perospirone, another azapirone derivative with antipsychotic properties, was synthesized and assayed several years after tiospirone. It was found to be both more potent and more selective in comparison and was commercialized instead.

<span class="mw-page-title-main">Clocapramine</span> Antipsychotic medication

Clocapramine, also known as 3-chlorocarpipramine, is an atypical antipsychotic of the iminostilbene class which was introduced in Japan in 1974 by Yoshitomi for the treatment of schizophrenia. In addition to psychosis, clocapramine has also been used to augment antidepressants in the treatment of anxiety and panic.

<span class="mw-page-title-main">Clorotepine</span> Antipsychotic medication

Clorotepine, also known as octoclothepin or octoclothepine, is an antipsychotic of the tricyclic group which was derived from perathiepin in 1965 and marketed in the Czech Republic by Spofa in or around 1971 for the treatment of schizophrenic psychosis.

<span class="mw-page-title-main">Aripiprazole lauroxil</span> Chemical compound

Aripiprazole lauroxil, sold under the brand name Aristada, is a long-acting injectable atypical antipsychotic that was developed by Alkermes. It is an N-acyloxymethyl prodrug of aripiprazole that is administered via intramuscular injection once every four to eight weeks for the treatment of schizophrenia. Aripiprazole lauroxil was approved by the U.S. Food and Drug Administration (FDA) on 5 October 2015.

<span class="mw-page-title-main">Perlapine</span> Sedative and hypnotic medication

Perlapine, sold under the brand names Hypnodine and Pipnodine, is a hypnotic and sedative of the tricyclic group which is marketed in Japan. It acts primarily as a potent antihistamine, and also has anticholinergic, antiserotonergic, antiadrenergic, and some antidopaminergic activity. The drug has relatively weak affinity for the dopamine D2 receptor (IC50Tooltip Half-maximal inhibitory concentration = 1,803 nM) and, in accordance, is said to be ineffective as an antipsychotic. However, it retains higher affinity for the dopamine D1 receptor (IC50 = 198 nM). Its IC50 values are 19 nM for the α1-adrenergic receptor, 4,945 nM for the α2-adrenergic receptor, and 70 nM for the serotonin 5-HT2A receptor. Perlapine is closely related to clotiapine, clozapine, fluperlapine, loxapine, and tilozepine.

References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-16.
  2. Morton IK, Hall JM (31 October 1999). Concise Dictionary of Pharmacological Agents: Properties and Synonyms. Springer Science & Business Media. pp. 222–. ISBN   978-0-7514-0499-9.
  3. 1 2 Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 985–. ISBN   978-1-4757-2085-3.
  4. Ansoms C, Backer-Dierick GD, Vereecken JL (February 1977). "Sleep disorders in patients with severe mental depression: double-blind placebo-controlled evaluation of the value of pipamperone (Dipiperon)". Acta Psychiatrica Scandinavica. 55 (2): 116–122. doi:10.1111/j.1600-0447.1977.tb00147.x. PMID   320830. S2CID   40758854.
  5. Healy D (1 July 2009). The Creation of Psychopharmacology. Harvard University Press. pp. 251–. ISBN   978-0-674-03845-5.
  6. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC   10851641 . PMID   37982394.
  7. 1 2 3 4 Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, et al. (March 1996). "Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding". Psychopharmacology. 124 (1–2): 57–73. doi:10.1007/bf02245606. PMID   8935801. S2CID   12028979.
  8. Wainscott DB, Lucaites VL, Kursar JD, Baez M, Nelson DL (February 1996). "Pharmacologic characterization of the human 5-hydroxytryptamine2B receptor: evidence for species differences". The Journal of Pharmacology and Experimental Therapeutics. 276 (2): 720–727. PMID   8632342.
  9. Prinssen EP, Koek W, Kleven MS (January 2000). "The effects of antipsychotics with 5-HT(2C) receptor affinity in behavioral assays selective for 5-HT(2C) receptor antagonist properties of compounds". European Journal of Pharmacology. 388 (1): 57–67. doi:10.1016/s0014-2999(99)00859-6. PMID   10657547.
  10. 1 2 3 4 5 Leyson JE (6 December 2012). "Receptor profile of antipsychotics". In Ellenbroek BA, Cools AR (eds.). Atypical Antipsychotics. Birkhäuser. pp. 62–. ISBN   978-3-0348-8448-8.
  11. Van Craenenbroeck K, Gellynck E, Lintermans B, Leysen JE, Van Tol HH, Haegeman G, Vanhoenacker P (December 2006). "Influence of the antipsychotic drug pipamperone on the expression of the dopamine D4 receptor". Life Sciences. 80 (1): 74–81. doi:10.1016/j.lfs.2006.08.024. PMID   16978659.
  12. 1 2 3 Wade AG, Crawford GM, Nemeroff CB, Schatzberg AF, Schlaepfer T, McConnachie A, et al. (October 2011). "Citalopram plus low-dose pipamperone versus citalopram plus placebo in patients with major depressive disorder: an 8-week, double-blind, randomized study on magnitude and timing of clinical response" (PDF). Psychological Medicine. 41 (10): 2089–2097. doi:10.1017/S0033291711000158. PMID   21349239. S2CID   19189492.
  13. Abi-Dargham A, Krystal J (22 June 2000). "Serotonin Receptors as Targets of Antipsychotic Medications". In Lidow MS (ed.). Neurotransmitter Receptors in Actions of Antipsychotic Medications. CRC Press. pp. 88–. ISBN   978-1-4200-4177-4.
  14. Awouters FH, Lewi PJ (2007). "Forty years of antipsychotic Drug research--from haloperidol to paliperidone--with Dr. Paul Janssen". Arzneimittel-Forschung. 57 (10): 625–632. doi:10.1055/s-0031-1296660. PMID   18074755. S2CID   5713281.
  15. Vanden Bussche G, Gelders YG, Heylen SL (1990). "[Development of new antipsychotic drugs]". Acta Psiquiatrica y Psicologica de America Latina (in Spanish). 36 (1–2): 13–25. PMID   2127339.
  16. Niemegeers CJ, Awouters F, Janssen PA (1990). "[Serotonin antagonism involved in the antipsychotic effect. Confirmation with ritanserine and risperidone]". L'Encéphale (in French). 16 (2): 147–151. PMID   1693560.
  17. Psychotropic Agents: Part I: Antipsychotics and Antidepressants. Springer Science & Business Media. 2012-12-06. ISBN   9783642675386.
  18. Bart A. Ellenbroek, Alexander R. Cools (eds.) (6 December 2012). Atypical Antipsychotics. Basel: Birkhäuser, pp. 62 f. ISBN   978-3-0348-8448-8.
  19. Kirk R (February 2010). "Clinical trials in CNS--SMi's eighth annual conference". IDrugs. 13 (2): 66–69. PMID   20127552.