SB-200646

Last updated
SB-200646
SB-200646.svg
Clinical data
ATC code
  • none
Legal status
Legal status
  • UN:Unscheduled
Identifiers
  • 1-(1-Methyl-1H-indol-5-yl)-3-pyridin-3-ylurea
CAS Number
PubChem CID
ChemSpider
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C15H14N4O
Molar mass 266.304 g·mol−1
3D model (JSmol)
  • Cn1ccc2c1ccc(c2)NC(=O)Nc3cccnc3
  • InChI=1S/C15H14N4O/c1-19-8-6-11-9-12(4-5-14(11)19)17-15(20)18-13-3-2-7-16-10-13/h2-10H,1H3,(H2,17,18,20)
  • Key:OJZZJTLBYXHUSJ-UHFFFAOYSA-N

SB-200646 is a 5-HT2 receptor antagonist with anxiolytic properties in rats. It was the first 5-HT2 antagonist discovered to exhibit selectivity for the 5-HT2C/2B receptors over the 5-HT2A receptor. [1]

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

The 5-HT2 receptors are a subfamily of 5-HT receptors that bind the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT2 subfamily consists of three G protein-coupled receptors (GPCRs) which are coupled to Gq/G11 and mediate excitatory neurotransmission, including 5-HT2A, 5-HT2B, and 5-HT2C. For more information, please see the respective main articles of the individual subtypes:

5-HT<sub>2C</sub> receptor Serotonin receptor protein distributed mainly in the choroid plexus

The 5-HT2C receptor is a subtype of the 5-HT2 receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, it is a G protein-coupled receptor (GPCR) that is coupled to Gq/G11 and mediates excitatory neurotransmission. HTR2C denotes the human gene encoding for the receptor, that in humans is located on the X chromosome. As males have one copy of the gene and females have one of the two copies of the gene repressed, polymorphisms at this receptor can affect the two sexes to differing extent.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, the 5-HT2B receptor is Gq/G11-protein coupled, leading to downstream activation of phospholipase C.

<span class="mw-page-title-main">RS-127445</span> Chemical compound

RS-127445 is a drug which acts as a potent and selective antagonist at the serotonin 5-HT2B receptor, with around 1000 times selectivity over the closely related 5-HT2A and 5-HT2C receptors. The role of the 5-HT2B receptor in the body is still poorly understood, and RS-127445 has been a useful tool in unravelling the function of the various systems in which this receptor is expressed.

<span class="mw-page-title-main">SB-204741</span> Chemical compound

SB-204741 is a drug which acts as a potent and selective antagonist at the serotonin 5-HT2B receptor, with around 135x selectivity over the closely related 5-HT2C receptor, and even higher over the 5-HT2A receptor and other targets. It is used in scientific research for investigating the functions of the 5-HT2B receptor.

<span class="mw-page-title-main">BW-723C86</span> Chemical compound

BW-723C86 is a tryptamine derivative drug which acts as a 5-HT2B receptor agonist. It has anxiolytic effects in animal studies, and is also used for investigating the function of the 5-HT2B receptor in a range of other tissues.

<span class="mw-page-title-main">SDZ SER-082</span> Chemical compound

SDZ SER-082 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors, with good selectivity over other serotonin receptor subtypes and slight preference for 5-HT2C over 5-HT2B. It has been used in animal studies into the behavioural effects of the different 5-HT2 subtypes, and how they influence the effects of other drugs such as cocaine.

<span class="mw-page-title-main">SB-215505</span> Chemical compound

SB-215505 is a drug which acts as a potent and selective antagonist at the serotonin 5-HT2B receptor, with good selectivity over the related 5-HT2A and 5-HT2C receptors. It is used in scientific research into the function of the 5-HT2 family of receptors, especially to study the role of 5-HT2B receptors in the heart, and to distinguish 5-HT2B-mediated responses from those produced by 5-HT2A or 5-HT2C.

<span class="mw-page-title-main">Serotonin antagonist and reuptake inhibitor</span> Class of drug

Serotonin antagonist and reuptake inhibitors (SARIs) are a class of drugs used mainly as antidepressants, but also as anxiolytics and hypnotics. They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or dopamine. Additionally, most also antagonize α1-adrenergic receptors. The majority of the currently marketed SARIs belong to the phenylpiperazine class of compounds.

<span class="mw-page-title-main">ORG-37684</span> Chemical compound

ORG-37684 is a drug developed by Organon, which acts as a potent and selective agonist for the 5-HT2 receptor family, with highest affinity at 5-HT2C and lowest at 5-HT2B subtypes. It has anorectic effects in animal studies and has been researched as a potential weight loss drug for use in humans.

<span class="mw-page-title-main">SB-206553</span> Chemical compound

SB-206553 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors. It has anxiolytic properties in animal studies and interacts with a range of other drugs. It has also been shown to act as a positive allosteric modulator of α7 nicotinic acetylcholine receptors. Modified derivatives of SB-206553 have been used to probe the structure of the 5-HT2B receptor.

<span class="mw-page-title-main">5-MeO-NBpBrT</span> Chemical compound

5-MeO-NBpBrT is a N-substituted member of the methoxytryptamine family of compounds. Like other such compounds it acts as an antagonist for the 5-HT2A receptor, with a claimed 100x selectivity over the closely related 5-HT2C receptor. While N-benzyl substitution of psychedelic phenethylamines often results in potent 5-HT2A agonists, it had been thought that N-benzyl tryptamines show much lower efficacy and are either very weak partial agonists or antagonists at 5-HT2A, though more recent research has shown stronger agonist activity for 3-substituted benzyl derivatives. Extending the benzyl group to a substituted phenethyl can also recover agonist activity in certain cases.

<span class="mw-page-title-main">Glemanserin</span> Chemical compound

Glemanserin (INN) is a drug which acts as a potent and selective 5-HT2A receptor antagonist. The first truly selective 5-HT2A ligand to be discovered, glemanserin resulted in the development of the widely used and even more potent and selective 5-HT2A receptor antagonist volinanserin (MDL-100,907), which is a fluorinated analogue. Though it was largely superseded in scientific research by volinanserin, glemanserin was investigated clinically for the treatment of generalized anxiety disorder. However, it was ultimately found to be ineffective and was not marketed.

5-HT2C receptor agonists are a class of drugs that activate 5-HT2C receptors. They have been investigated for the treatment of a number of conditions including obesity, psychiatric disorders, sexual dysfunction and urinary incontinence.

<span class="mw-page-title-main">25CN-NBOH</span> Chemical compound

25CN-NBOH is a compound indirectly derived from the phenethylamine series of hallucinogens, which was discovered in 2014 at the University of Copenhagen. This compound is notable as one of the most selective agonist ligands for the 5-HT2A receptor yet discovered, with a pKi of 8.88 at the human 5-HT2A receptor and with 100x selectivity for 5-HT2A over 5-HT2C, and 46x selectivity for 5-HT2A over 5-HT2B. A tritiated version of 25CN-NBOH has also been accessed and used for more detailed investigations of the binding to 5-HT2 receptors and autoradiography.

<span class="mw-page-title-main">SB-243213</span> Chemical compound

SB-243213 is a research chemical which acts as a selective inverse agonist for the 5HT2C receptor and has anxiolytic effects. It has better than 100x selectivity for 5-HT2C over all other receptor subtypes tested, and a longer duration of action compared to older 5-HT2C antagonist ligands.

<span class="mw-page-title-main">Amesergide</span> Chemical compound

Amesergide is a serotonin receptor antagonist of the ergoline and lysergamide families related to methysergide which was under development by Eli Lilly and Company for the treatment of a variety of conditions including depression, anxiety, schizophrenia, male sexual dysfunction, migraine, and thrombosis but was never marketed. It reached phase II clinical trials for the treatment of depression, erectile dysfunction, and premature ejaculation prior to the discontinuation of its development.

<span class="mw-page-title-main">SB-228357</span> Chemical compound

SB-228357 is a drug which acts as an antagonist for the 5HT2B and 5HT2C receptors. It has antidepressant and anxiolytic effects in animal models, and inhibits 5-HT2B mediated proliferation of cardiac fibroblasts.

<span class="mw-page-title-main">SCQ1</span> Chemical compound

(S)-SCQ1 is a drug which acts as a potent and selective antagonist for the 5-HT2B and 5-HT2C serotonin receptors, but with only modest affinity for the closely related 5-HT2A receptor and other targets such as 5-HT7. Since most currently available 5-HT2 class ligands have relatively poor selectivity and bind to all three subtypes, the selectivity of (S)-SCQ1 is expected to be useful for studying 5-HT2A receptor mediated responses in the absence of 5-HT2B and 5-HT2C activation.

References

  1. Kennett GA, Wood MD, Glen A, Grewal S, Forbes I, Gadre A, Blackburn TP (March 1994). "In vivo properties of SB 200646A, a 5-HT2C/2B receptor antagonist". British Journal of Pharmacology. 111 (3): 797–802. doi:10.1111/j.1476-5381.1994.tb14808.x. PMC   1910094 . PMID   7912626.