Clinical data | |
---|---|
Other names | LAA, [1] [2] [3] [4] [5] ᴅ-lysergic acid amide, ᴅ-lysergamide, ergine, LA-111, "LSA" |
Pregnancy category |
|
Routes of administration | Oral, intramuscular injection |
ATC code |
|
Legal status | |
Legal status | |
Pharmacokinetic data | |
Metabolism | Hepatic |
Excretion | Renal |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.006.841 |
Chemical and physical data | |
Formula | C16H17N3O |
Molar mass | 267.332 g·mol−1 |
3D model (JSmol) | |
Melting point | 135 °C (275 °F) Decomposes [9] |
| |
| |
(verify) |
Ergine, also known as lysergic acid amide and lysergamide, is an ergoline alkaloid that occurs in Clavicipitaceous fungi, which includes Convolvulaceae vines (Morning Glory), which have a permanent bond with these fungi. [10] The most common source of ergine for consumers is the seeds of Ipomoea tricolor, Ipomoea corymbosa, and Argyreia nervosa; [11] [12] [13] isoergine [14] and lysergic acid propanolamide [15] have also been shown to contribute to their psychoactivity.
Ergine is not a biosynthetic endpoint itself, but rather a hydrolysis product of lysergic acid hydroxyethylamide (LAH), lysergic acid hydroxymethylethylamide (ergonovine), and ergopeptines or their ergopeptam precursors. [16] [17] [18] [19] [20]
Lysergic acid hydroxyethylamide is very vulnerable to this hydrolysis, [21] [22] and many analyses of ergoline-containing fungi show little to no LAH and substantial amounts of ergine.
An ergine analog, 8-hydroxyergine, has also been found in natural products in two studies. [23] [24] Methylergonovine and methylmethylergonovine (methysergide) have also been found in a natural product in only one study; [25] these are documented as semisynthetic chemicals, so the findings need to be repeated for certainty. The aforementioned chemicals are the only natural ergoamides.
LAH & ergine are predominant in Claviceps paspali, [26] [27] [28] but are only found in trace amounts in the more well-known Claviceps purpurea [29] [30] (both are ergot-spreading fungi). The major products of C. purpurea are ergopeptines, but C. paspali does not generate ergopeptines. [31] Ergonovine is the only ergoamide in C. purpurea in a substantial amount. [32]
LAH & ergine are also found in the related fungi, Periglandula , which are permanently connected with Ipomoea tricolor , Ipomoea corymbosa , Argyreia nervosa ("morning glory", coaxihuitl, Hawaiian baby woodrose), and an estimated over 440 other Convolvulaceae [10] (ergolines have been identified in 42 of these plants and not all of them contain ergine [33] ). Ergonovine is present in Ipomoea tricolor in one-tenth to one-third of the amount of ergine. [34] This variable may account for the varying reports about the psychedelic effect of these seeds. [15]
Other fungi that have been found to contain LAH and/or ergine:
All of these fungi are related to Claviceps fungi. Aspergillus is considered to be a more distant relative of Claviceps.
Other fungi that possibly contain ergine (i.e. they have been found to contain ergonovine and/or ergopeptines):
Ergine has only been given a minuscule amount of attention. Albert Hofmann and his colleagues self-administered ergine, [60] and it was adminstered in two clinical trials. [61] [14] Synthetic ergine was used in all cases. Albert Hofmann stated that ergine induces a "psychotomimetic" effect with "a marked narcotic component": "Tired, dreamy, incapable of clear thoughts. Very sensitive to noises which give an unpleasant sensation." There are parallels between Hofmann's comments and the ones in the two trials:
Hofmann 1963 | Heim 1968 | Solms 1956 |
---|---|---|
"dysphoria" | "irritative depressive moods" | |
"incapable of clear thoughts" | "impairment of concentration" "clouding of consciousness" | "impaired concentration" "clouding of consciousness" "With middle to strong doses in 1 subject work became increasingly difficult after 30 minutes" |
"Desire to lie down and sleep. Genuine physical and mental tiredness, which is not experienced as an unpleasant sensation. Slept for 3 hours." | "test subject SB [...] had to go to bed after an antineoplastic injection and did not recover until the following day." "In the fourth and fifth study periods, however, they appeared to be sufferingly exhausted and even sleepy and dazed." [isoergine] | "and an immediate desire to sleep, after which he slept for three hours during the day". |
"a feeling of mental emptiness and of the unreality and complete meaninglessness of the outside world". [isoergine] | "In the test subject PS (5 mg), severe nausea with a drop in blood pressure suddenly occurred after 3½ hours, which was controlled with analeptics and antinausea after about 30 minutes. At the same time, the test subject experienced a feeling of total annihilation and fear of death, which subsided after vomiting about 60 minutes later, but only completely subsided during the course of the night." [isoergine]
| "Indifference"
|
Heim 1968 also noted "paraesthesia", "synesthesia" and an "overestimation of the time that had passed" (isoergine), but also concluded, "our experiments with ᴅ-lysergic acid amide also confirm the results that Sᴏʟᴍꜱ had made with this substance, namely a predominantly sedative intoxication." Hofmann emphasized this sedative effect:
"Furthermore there is not only a quantitative difference between the principles of Ipomoea [tricolor] and Turbina corymbosa and LSD; there is likewise a qualitative one, LSD being a very specific hallucinogen, whereas the psychic effects of lysergic acid amide and the total alkaloids of these two plants are characterized by a pronounced narcotic component (Hofmann, 1968)." [62]
"A substance very closely related to LSD, the monoethylamide of lysergic acid (LAE-32), in which an ethyl group is replaced by a hydrogen atom on the diethylamide residue of LSD, proved to be some ten times less psychoactive than LSD. The hallucinogenic effect is also qualitatively different: it is characterized by a narcotic component. This narcotic effect is yet more pronounced in lysergic acid amide (LA-111), in which both ethyl groups of LSD are displaced by hydrogen atoms. These effects, which I established in comparative self-experiments with LA-111 and LAE-32, were corroborated by subsequent clinical investigations." [63]
"The experience had some strong narcotic effect, but at the same time there was a very strange sense of voidness. In this [void], everything loses its meaning. It is a very mystical experience." [64]
Receptor | Affinity (Ki [nM]) | |
---|---|---|
LSA | LSD | |
5-HT1A | 10 | 2.5 |
5-HT2 | 28 | 0.87 |
D1 | 832 | 87 |
D2L | 891 | 155 |
D2S | 145 | 25 |
D3 | 437 | 65 |
D4.4 | 141 | 30 |
α1 | 912 | 60 |
α2 | 62 | 1.0 |
Notes: 5-HT1A and D1 are for pig receptors. [65] |
Ergine interacts with serotonin, dopamine, and adrenergic receptors similarly to but with lower affinity than lysergic acid diethylamide (LSD). [65] [66] The psychedelic effects of ergine can be attributed to activation of serotonin 5-HT2A receptors. [67]
Ergine was first obtained by Sidney Smith and Geoffrey Willward Timmis in 1932. [68]
Albert Hofmann was first to identify ergine as a natural constituent of Turbina corymbosa seeds. [13]
The biosynthetic pathway to ergine starts like most other ergoline alkaloid- with the formation of the ergoline scaffold. This synthesis starts with the prenylation of L-tryptophan in an SN1 fashion with dimethylallyl diphosphate (DMAPP) as the prenyl donor and catalyzed by prenyltransferase 4-dimethylallyltryptophan synthase (DMATS), to form 4-L-dimethylallyltryptophan (4-L-DMAT). The DMAPP is derived from mevalonic acid. A three strep mechanism is proposed to form 4-L-DMAT: the formation of an allylic carbocation, a nucleophilic attack of the indole nucleus to the cation, followed by deprotonation to restore aromaticity and to generate 4-L-DMAT. [69] 4-Dimethylallyltyptophan N-methyltransferase (EasF) catalyzes the N-methylation of 4-L-DMAT at the amino of the tryptophan backbone, using S-Adenosyl methionine (SAM) as the methyl source, to form 4-dimethylallyl-L-abrine (4-DMA-L-abrine). [69] The conversion of 4-DMA-L-abrine to chanoclavine-I is thought to occur through a decarboxylation and two oxidation steps, catalyzed by the FAD dependent oxidoreductase, EasE, and the catalase, EasC. The chanoclavine intermediate is then oxidized to chanoclavine-l-aldehyde, catalyzed by the short-chain dehydrogenase/reductase (SDR), EasD. [69] [70]
From here, the biosynthesis diverges and the products formed are plant and fungus-specific. The biosynthesis of ergine in Claviceps purpurea will be exemplified, in which agroclavine is produced following the formation of chanoclavine-l-aldehyde, catalyzed by EasA through a keto-enol tautomerization to facilitate rotation about the C-C bond, followed by tautomerization back to the aldehyde and condensation with the proximal secondary amine to form an iminium species, which is subsequently reduced to the tertiary amine and yielding argoclavine. [69] [70] Cytochrome P450 monooxygenases (CYP450) are then thought to catalyze the formation of elymoclavine from argoclavine via a 2 electron oxidation. This is further converted to paspalic acid via a 4 electron oxidation, catalyzed by cloA, a CYP450 monooxygenase. Paspalic acid then undergoes isomerization of the C-C double bond in conjugation with the acid to form D-lysergic acid. [69] While the specifics of the formation of ergine from D-lysergic acid are not known, it is proposed to occur through a nonribosomal peptide synthase (NRPS) with two enzymes primarily involve: D-lysergyl peptide synthase (LPS) 1 and 2. [69] [70]
Albert Hofmann describes ergine as "the main constituent of ololiuhqui". [73] Ololiuhqui was used by South American healers in shamanic healing ceremonies. [74] Similarly, ingestion of morning glory seeds by Mazatec tribes to "commune with their gods" was reported by Richard Schultes in 1941 and is still practiced today. [75] [74]
According to the ethnobotanist R. Gordon Wasson, Thomas MacDougall and Francisco Ortega ("Chico"), a Zapotec guide and trader, should be credited for the discovery of the ceremonial use of Ipomoea tricolor seeds in Zapotec towns and villages in the uplands of southern Oaxaca. The seeds of both Ipomoea tricolor and Rivea corymbosa , another species which has a similar chemical profile, are used in some Zapotec towns. [76]
The Central Intelligence Agency conducted research on the psychedelic properties of Rivea corymbosa seeds for MKULTRA. [77]
My chemical investigations of Ololiuhqui seeds led to the unexpected discovery that the entheogenic principles of Ololiuhqui are alkaloids, especially lysergic acid amide, which exhibits a very close relationship to lysergic acid diethylamide (=ʟsᴅ). It follows therefrom that ʟsᴅ, which hitherto had been considered to be a synthetic product of the laboratory, actually belongs to the group of sacred Mexican drugs.
— Albert Hofmann, Burg i.L., Switzerland, November 1992 [78]
While its physiological effects vary from person to person, the following symptoms have been attributed to the consumption of ergine or ergine containing seeds: [13] [74] [79]
One study found that 2 of 4 human subjects experienced cardiovascular dysregulation and the study had to be halted, concluding that the ingestion of seeds containing ergine was less safe than commonly believed. Importantly this may have been a product of other substances within the seeds. The same study also observed that reactions were highly differing in type and intensity between different subjects. [80]
Like other psychedelics, ergine is not considered to be addictive. Additionally, there are no known deaths directly associated with pharmacological effects of ergine consumption. All associated deaths are due to indirect causes, such as self-harm, impaired judgement, and adverse drug interactions. One known case involved a suicide that was reported in 1964 after ingestion of morning glory seeds. [81] Another instance is a death due to falling off of a building after ingestion of Hawaiian baby woodrose seeds and alcohol. [82] A study gave mice 3000 mg/kg with no lethal effects.[ citation needed ]
A 2016 study showed that penniclavine was the predomiant alkaloid in Ipomoea tricolor seeds. [34] Ergoclavines are known to cause convulsive ergotism, [83] the milder form of ergotism. Gangrenous ergotism is caused by ergopeptines: the complex peptide moiety forces persistance at the receptor sites. [84] Ergopeptines are rare in Convolvulaceae, being found in 10 species, [85] [86] not including the three that are commonly ingested, although Paulke 2014 says analytical evidence suggests that A. nervosa contains ergopeptines. [87] Many people desire purified seed extracts, but the efficacy of this is questionable, as even pure ergine and ergonovine have shown toxic effects.
Ergine:
"The expression and behavior of the test subjects changed just 45 minutes after taking the substance: the test subjects appeared to be suffering, their facial expressions were deteriorating as if they had suffered a serious illness, and their movements were noticeably slower."
"In the self-reports of both test subjects, complaints about vegetative symptoms predominated: unpleasant, flu-like feeling of illness, nausea, sudden onset of nausea, with vomiting that could be stopped with 2 cm3 of Cyclicinum hydrochloricum. In addition, sensations of heat, sweating, dizziness, a feeling of heaviness and general tiredness were observed."
Heim 1968 [88]
Ergonovine:
"Walking in this dreamy state was difficult due to leg cramps and slight incoordination. There was always a great desire to lie supine."
"One of us (J.B.) felt the cramping in the legs as painful and debilitating."
"We all had a slight hangover the following morning."
"The mild entheogenic effects of ergonovine are similar to those of LSD. However, in dramatic contrast to LSD, the somatic effects of ergonovine greatly overshadow its psychic effects, so much so that we had no wish to ingest more than 10.0 mg,"
Bigwood 1979 [89]
Garden seeds, in general, may be coated with fungicides et. al. (e.g. neonicotinoids, Thiram, and ApronMaxx). It is rumored that this is the cause of the severe adverse effects that have been observed, but the seeds, themselves, contain toxins, specifically glycoresins [90] [91] and ergoclavines. [92] Some people even believe that an emetic chemical is purposely added to the seeds to prevent people from ingesting them, but that has never been proven. One 1964 article states that reported adverse effects must come from the seeds, as the stated insecticide is too "inocuous" to humans to be responsible. [93]
A related rumor is that the seeds contain cyanogenic glycosides. The UseNet post on which this is based contains two references, but neither of them support that claim, [94] and Eckart Eich says that they probably don't occur in many Convolvulaceae. [95] There is a similar claim in a publication from 1973, warning about "a strychnine-like alkaloid", [96] but that is probably just a misapplication of the claim that peyote contains strychnine, which, itself, is a rumor. [97]
The legality of consuming, cultivating, and possessing ergine varies depending on the country.
There are no laws against possession of ergine-containing seeds in the United States. However, possession of the pure compound without a prescription or a DEA license would be prosecuted, as ergine, under the name "lysergic acid amide", is listed under Schedule III of the Controlled Substances Act. [98] Similarly, ergine is considered a Class A substance in the United Kingdom, categorized as a precursor to LSD.
In most Australian states, the consumption of ergine containing materials is prohibited under state legislation.
In Canada, ergine is not illegal to possess as it is not listed under Canada's Controlled Drugs and Substances Act, though it is likely illegal to sell for human consumption. [99]
In New Zealand, ergine is a controlled drug, however the plants and seeds of the morning glory species are legal to possess, cultivate, buy, and distribute.
Convolvulaceae, commonly called the bindweeds or morning glories, is a family of about 60 genera and more than 1,650 species. These species are primarily herbaceous vines, but also include trees, shrubs and herbs. The tubers of several species are edible, the best known of which is the sweet potato.
Ipomoea corymbosa is a species of morning glory, native throughout Latin America from Mexico as far south as Peru and widely naturalised elsewhere. Its common names include Christmasvine, Christmaspops, and snakeplant.
Ergot or ergot fungi refers to a group of fungi of the genus Claviceps.
Ergoline is a core structure in many alkaloids and their synthetic derivatives. Ergoline alkaloids were first characterized in ergot. Some of these are implicated in the condition of ergotism, which can take a convulsive form or a gangrenous form. Even so, many ergoline alkaloids have been found to be clinically useful. Annual world production of ergot alkaloids has been estimated at 5,000–8,000 kg of all ergopeptines and 10,000–15,000 kg of lysergic acid, used primarily in the manufacture of semi-synthetic derivatives.
Lysergic acid, also known as D-lysergic acid and (+)-lysergic acid, is a precursor for a wide range of ergoline alkaloids that are produced by the ergot fungus and found in the seeds of Argyreia nervosa, and Ipomoea species.
Ipomoea is the largest genus in the plant family Convolvulaceae, with over 600 species. It is a large and diverse group, with common names including morning glory, water convolvulus or water spinach, sweet potato, bindweed, moonflower, etc. The genus occurs throughout the tropical and subtropical regions of the world, and comprises annual and perennial herbaceous plants, lianas, shrubs, and small trees; most of the species are twining climbing plants.
Ipomoea tricolor, the Mexican morning glory or just morning glory, is a species of flowering plant in the family Convolvulaceae, native to the tropics of the Americas, and widely cultivated and naturalised elsewhere.
Argyreia nervosa is a perennial climbing vine native to the Indian subcontinent and introduced to numerous areas worldwide, including Hawaii, Africa, and the Caribbean. Though it can be invasive, it is often prized for its aesthetic and medicinal value. Common names include Hawaiian baby woodrose, adhoguda अधोगुडा or vidhara विधारा (Sanskrit), elephant creeper and woolly morning glory. Its seeds are known for their powerful entheogenic properties, greater or similar to those of Ipomoea species, with users reporting significant psychedelic and spiritual experiences. The two botanical varieties are Argyreia nervosa var. nervosa described here, and Argyreia nervosa var. speciosa, the roots of which are used in Ayurvedic medicine.
Ergonovine, also known as ergometrine and lysergic acid propanolamide is a medication used to cause contractions of the uterus to treat heavy vaginal bleeding after childbirth. It can be used either by mouth, by injection into a muscle, or injection into a vein. It begins working within 15 minutes when taken by mouth and is faster in onset when used by injection. Effects last between 45 and 180 minutes.
ᴅ-Lysergic acid α-hydroxyethylamide, also known as ᴅ-lysergic acid methyl carbinolamide, is an ergoamide and an ergoline. It is perhaps the main constituent of the parasitic fungus, Claviceps paspali; and found in trace amounts in Claviceps Purpurea. C. paspali and C. purpurea are ergot-spreading fungi. Periglandula, Clavicipitacepus fungi, are permanently symbiotically connected to an estimated 450 species of Convolvulaceae and thus generate LAH in some of them. The most well-known ones are Ipomoea tricolor, Turbina corymbosa (coaxihuitl), and Argyreia nervosa.
Methylergometrine, also known as methylergonovine and sold under the brand name Methergine, is a medication of the ergoline and lysergamide groups which is used as an oxytocic in obstetrics and as an antimigraine agent in the treatment of migraine headaches. It reportedly produces psychedelic effects similar to those of lysergic acid diethylamide (LSD) at high doses.
Lysergol is an alkaloid of the ergoline family that occurs as a minor constituent in some species of fungi, and in the morning glory family of plants (Convolvulaceae), including the hallucinogenic seeds of Rivea corymbosa (ololiuhqui), Argyreia nervosa and Ipomoea violacea. Lysergol is not a controlled substance in the USA. Its possession and sale is also legal under the U.S. Federal Analog Act because it does not have a known pharmacological action or a precursor relationship to LSD, which is a controlled substance. However, lysergol is an intermediate in the manufacture of some ergoloid medicines.
Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.
Claviceps purpurea is an ergot fungus that grows on the ears of rye and related cereal and forage plants. Consumption of grains or seeds contaminated with the survival structure of this fungus, the ergot sclerotium, can cause ergotism in humans and other mammals. C. purpurea most commonly affects outcrossing species such as rye, as well as triticale, wheat and barley. It affects oats only rarely.
Epichloë is a genus of ascomycete fungi forming an endophytic symbiosis with grasses. Grass choke disease is a symptom in grasses induced by some Epichloë species, which form spore-bearing mats (stromata) on tillers and suppress the development of their host plant's inflorescence. For most of their life cycle however, Epichloë grow in the intercellular space of stems, leaves, inflorescences, and seeds of the grass plant without incurring symptoms of disease. In fact, they provide several benefits to their host, including the production of different herbivore-deterring alkaloids, increased stress resistance, and growth promotion.
Achnatherum robustum, commonly known as sleepy grass, is a perennial plant in the Poaceae or grass family.
Ipomoea asarifolia, known as the ginger-leaf morning-glory, is a species of plant in the family Convolvulaceae, of the genus Ipomoea.
Ergocryptine is an ergopeptine and one of the ergoline alkaloids. It is isolated from ergot or fermentation broth and it serves as starting material for the production of bromocriptine. Two isomers of ergocryptine exist, α-ergocryptine and β-ergocryptine. The beta differs from the alpha form only in the position of a single methyl group, which is a consequence of the biosynthesis in which the proteinogenic amino acid leucine is replaced by isoleucine. β-Ergocryptine was first identified in 1967 by Albert Hofmann. Ergot from different sources have different ratios of the two isomers.
Argyreia cuneata is a perennial climbing shrub which is native to the Indian subcontinent and is related to Argyreia nervosa.
Periglandula are a genus of fungi in the family Clavicipitaceae. They live as epibionts, in a symbiotic relationship with two species of plant, Ipomoea asarifolia and Ipomoea corymbosa. They are known to produce ergot alkaloids related to lysergic acid.
{{cite book}}
: CS1 maint: postscript (link){{cite book}}
: CS1 maint: postscript (link){{cite journal}}
: CS1 maint: postscript (link)
"This was an experiment performed without attention to 'set and setting' but it proves that ergonovine possesses a psychotropic, mood-changing, slightly hallucinogenic activity when taken in the same amount as [an] effective dose of lysergic acid amide, the main constituent of ololiuhqui." Hofmann, 2. A Challenging Question and My Answer, p. 41
{{cite journal}}
: CS1 maint: postscript (link)
Containing ergosine: Argyreia luzonensis, A. mollis, A. obtusifolia, A. philippinensis, A. ridleyi, A. splendens
Ipomoea argyrophylla (ergosine and ergobalansine)
See "Table 4.1 Unambiguously ergoline-positive Ipomoea species" (pages 225-227) and "Table 4.4 Unambiguously ergoline-positive Argyreia species" (p. 236)
Ipomoea amnicola and I. argillicola contain ergobalansine
"On the other hand, methylergometrine, methysergide, and lysergylalanine were detected, which have not yet been reported as compounds of Argyreia nervosa seeds. Furthermore, some high molecular weight ergot alkaloid derivatives and hydroxyalanine derived ergopeptide fragments could be observed at various retention times (c.f. chapter 3.1). Altogether, lysergylalanine, the high molecular weight ergot alkaloids and the hydroxyalanine derived ergopeptide fragments strongly suggest the presence of ergopeptides in Argyreia nervosa. However, due to the disadvantage of the applied APCI technique for peptide analysis (c.f. chapter 3.1) additional research (e.g. ESI-HRMS/MS) will be necessary to verify this assumption and to elucidate the structure of the ergopeptides." (3. Results and discussion, p. 283)
{{cite journal}}
: CS1 maint: postscript (link)
"Among the most striking characteristics of the family is the occurrence of rows of secretory cells with milky, resinous contents. Resin glycosides are among the most important chemical characteristics of the family. The occurrence of tropine alkaloids in Convolvulus species and lysergic acid type alkaloids in Ipomoea and Rivea species as well as a wide distribution of cinnamic acid derivatives and coumarins are also noteworthy. The last two groups of compounds are common to both the Convolvulaceae and Solanaceae families." The Chemistry of Resin Glycosides of the Convolvulaceae Family (H. Wagner), p. 235
"Resin glycosides are well known as purgative ingredients," (Abstract)
"Clavines are thought to contribute substantially to convulsive ergotism, since C. fusiformis ergots, which possess clavines, but no 1 or lysergyl amides, cause convulsive symptoms (26). However, the ergopeptines are known to produce similar symptoms, and are also thought to cause gangrenous ergotism (6). The occurrence of convulsive ergotism without dry gangrene suggests that other clavine or lysergyl alkaloids are involved, or that individual effects of specific ergopeptines may give clinically different syndromes (6)."
II. Through the Ages: A History of Ergot Alkaloid Use, Abuse, and Poisoning, p. 50
"It has been suggested6 that the insecticide coating on the morning glory seed might be promoting adverse side effects that have been noted. The majority of commercial seeds are treated with N-tri-chlorete which is a fungicide and seed protectant having a tolerance of 100 parts per million.8 Thus, this is quite an inocuous product from the toxicologic point of view and would require ingestion of quantities beyond the capacity of the stomach to absorb, in amounts found as a seed coater, to be considered lethal.9 Symptoms involving the nervous system would be lacking if we were dealing only with the effects of this fungicide. Formerly, compounds containing mercury were used extensively as fungicides and there is the possibility that some seeds so treated might pose a toxicologic danger if ingested. This is considered unlikely as the newer seed protectants have been in use for a considerably longer period than the current morning glory fad."
"It would seem then, that both the psychological and physiological effects observed in the ingestion of the seed of the morning glory reside in the alkaloids of the seed and not the seed protectant. The LSD-like reaction is most likely due to the LSD-like alkaloids for no pure LSD has as yet been isolated from the seed. As all compounds occurring in the morning glory seed have not been studied intensively enough to inspire confidence in their respective roles, they cannot yet be considered for scientific experimental use much less be used irresponsibly in excitement-seeking self-experimentation." (Comment, p. 1134)
See 6.2 Cyanogenic Glycosides, p. 274
"The standard procedure is to scrape or singe the white layer from the seed coat before grinding. This layer is believed to contain a strychnine-like alkaloid which may cause undesirable symptoms." (OLOLUIQUE and related sacraments in the Morning Glory (Bindweed) family, p. 13)
"To put one persistent myth to rest, there is no strychnine in peyote. The white fuzz that is usually removed from the buttons before ingestion can be a gastroirritant, but it does not contain strychnine. However, lophophorine, accounting for about 0.18% of the dry weight of the buttons, can cause some symptoms similar to strychnine poisoning, such as a sickening feeling in the back of the head, and hotness and blushing of the face. Lophophorine causes violent convulsions when injected into rabbits at concentrations of 12 milligrams per kilogram of body weight." (Peyote: Lophophora williamsii)