Noribogaine

Last updated

Noribogaine
Noribogaine.svg
Noribogaine 3D BS.png
Clinical data
Other names12-Hydroxyibogamine; Ibogamin-12-ol; O-desmethylibogaine; (-)-Noribogaine;
Legal status
Legal status
  • AU: S4 (Prescription only)
  • US:Unscheduled(but still a Schedule I analogue due to being a main metabolite of C-I ibogaine)
Identifiers
  • (1R,15R,17S,18S)-17-ethyl-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4(9),5,7-tetraen-7-ol
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H24N2O
Molar mass 296.414 g·mol−1
3D model (JSmol)
  • CC[C@H]1C[C@@H]2C[C@@H]3[C@H]1N(C2)CCC4=C3NC5=C4C=C(C=C5)O
  • InChI=1S/C19H24N2O/c1-2-12-7-11-8-16-18-14(5-6-21(10-11)19(12)16)15-9-13(22)3-4-17(15)20-18/h3-4,9,11-12,16,19-20,22H,2,5-8,10H2,1H3/t11-,12+,16+,19+/m1/s1 Yes check.svgY
  • Key:RAUCDOKTMDOIPF-RYRUWHOVSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Noribogaine (actually O-desmethylibogaine), or 12-hydroxyibogamine, is the principal psychoactive metabolite of the oneirogen ibogaine. It is thought to be involved in the antiaddictive effects of ibogaine-containing plant extracts, such as Tabernanthe iboga . [1] [2] [3] [4]

Contents

Pharmacology

Noribogaine is a potent serotonin reuptake inhibitor, [5] but does not affect the reuptake of dopamine. [6] Unlike ibogaine, noribogaine does not bind to the sigma-2 receptor. [7] [8] Similarly to ibogaine, noribogaine acts as a weak NMDA receptor antagonist and binds to opioid receptors. [9] It has greater affinity for each of the opioid receptors than does ibogaine. [10]

Noribogaine is a hERG inhibitor and appears at least as potent as ibogaine. [11] The inhibition of the hERG potassium channel delays the repolarization of cardiac action potentials, resulting in QT interval prolongation and, subsequently, in arrhythmias and sudden cardiac arrest. [12]

κ-Opioid receptor

Noribogaine has been determined to act as a biased agonist of the κ-opioid receptor (KOR). [13] It activates the G protein (GDP-GTP exchange) signaling pathway with 75% the efficacy of dynorphin A (EC50 = 9 μM), but it is only 12% as efficacious at activating the β-arrestin pathway. [13] With an IC50 value of 1 μM, it can be regarded as an antagonist of the latter pathway. [13]

The β-arrestin signaling pathway is hypothesized to be responsible for the anxiogenic, dysphoric, or anhedonic effects of KOR activation. [14] Attenuation of the β-arrestin pathway by noribogaine may be the reason for the absence of these aversive effects, [13] while retaining analgesic and antiaddictive properties. This biased KOR activity makes it stand out from the other iboga alkaloids like ibogaine and the derivative 18-methoxycoronaridine (18-MC). [13]

Benzofuran analog

In 2024, a synthetic benzofuran analog (oxa-noribogaine) was reported that is devoid of the pro-arrhythmic side effect. It has analgesic effects as a potent (atypical) kappa-opioid receptor partial agonist and, opposed to standard KOR agonists, is characterized by the absence of pro-depressant effects. It induces a robust KOR-dependent increase in GDNF protein levels in the ventral tegmental area and medial prefrontal cortex. After a single dose or short-term treatment, oxa-noribogaine induces long-lasting suppression of opioid drug seeking in rodent relapse models. It also counteracts persistent opioid-induced hyperalgesia. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Ibogaine</span> Psychoactive substance found in plants in the family Apocynaceae

Ibogaine is a psychoactive indole alkaloid obtained either by extraction from plants in the family Apocynaceae such as Tabernanthe iboga, Voacanga africana, and Tabernaemontana undulata or by semi-synthesis from the precursor compound voacangine, another plant alkaloid. The total synthesis of ibogaine was described in 1956. Structural elucidation by X-ray crystallography was completed in 1960.

<span class="mw-page-title-main">18-Methoxycoronaridine</span> Chemical compound

18-Methoxycoronaridine, also known as zolunicant, is a derivative of ibogaine invented in 1996 by the research team around the pharmacologist Stanley D. Glick from the Albany Medical College and the chemists Upul K. Bandarage and Martin E. Kuehne from the University of Vermont. In animal studies it has proven to be effective at reducing self-administration of morphine, cocaine, methamphetamine, nicotine and sucrose. It has also been shown to produce anorectic effects in obese rats, most likely due to the same actions on the reward system which underlie its anti-addictive effects against drug addiction.

<span class="mw-page-title-main">Voacangine</span> Chemical compound

Voacangine is an alkaloid found predominantly in the root bark of the Voacanga africana tree, as well as in other plants such as Tabernanthe iboga, Tabernaemontana africana, Trachelospermum jasminoides, Tabernaemontana divaricata and Ervatamia yunnanensis. It is an iboga alkaloid which commonly serves as a precursor for the semi-synthesis of ibogaine. It has been demonstrated in animals to have similar anti-addictive properties to ibogaine itself. It also potentiates the effects of barbiturates. Under UV-A and UV-B light its crystals fluoresce blue-green, and it is soluble in ethanol.

κ-opioid receptor Protein-coding gene in the species Homo sapiens, named for ketazocine

The κ-opioid receptor or kappa opioid receptor, abbreviated KOR or KOP for its ligand ketazocine, is a G protein-coupled receptor that in humans is encoded by the OPRK1 gene. The KOR is coupled to the G protein Gi/G0 and is one of four related receptors that bind opioid-like compounds in the brain and are responsible for mediating the effects of these compounds. These effects include altering nociception, consciousness, motor control, and mood. Dysregulation of this receptor system has been implicated in alcohol and drug addiction.

<span class="mw-page-title-main">Indole alkaloid</span> Class of alkaloids

Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.

μ-opioid receptor Protein-coding gene in the species Homo sapiens, named for its ligand morphine

The μ-opioid receptors (MOR) are a class of opioid receptors with a high affinity for enkephalins and beta-endorphin, but a low affinity for dynorphins. They are also referred to as μ(mu)-opioid peptide (MOP) receptors. The prototypical μ-opioid receptor agonist is morphine, the primary psychoactive alkaloid in opium and for which the receptor was named, with mu being the first letter of Morpheus, the compound's namesake in the original Greek. It is an inhibitory G-protein coupled receptor that activates the Gi alpha subunit, inhibiting adenylate cyclase activity, lowering cAMP levels.

<span class="mw-page-title-main">7-Hydroxymitragynine</span> Opioid analgesic compound

7-Hydroxymitragynine (7-OH) is a terpenoid indole alkaloid from the plant Mitragyna speciosa, commonly known as kratom. It was first described in 1994 and is a natural product derived from mitragynine present in the kratom leaf. 7-OH binds to opioid receptors like mitragynine, but research suggests that 7-OH binds with greater efficacy.

<span class="mw-page-title-main">Nalfurafine</span> Antipruritic drug

Nalfurafine is an antipruritic that is marketed in Japan for the treatment of uremic pruritus in individuals with chronic kidney disease undergoing hemodialysis. It activates the κ-opioid receptor (KOR) and is potent, selective, and centrally active. It was the first selective KOR agonist approved for clinical use. It has also been dubiously referred to as the "first non-narcotic opioid drug" in history.

<span class="mw-page-title-main">Dezocine</span> Opioid analgesic

Dezocine, sold under the brand name Dalgan, is an atypical opioid analgesic which is used in the treatment of pain. It is used by intravenous infusion and intramuscular injection.

<span class="mw-page-title-main">Coronaridine</span> Chemical compound

Coronaridine, also known as 18-carbomethoxyibogamine, is an alkaloid found in Tabernanthe iboga and related species, including Tabernaemontana divaricata for which it was named.

<span class="mw-page-title-main">Ibogamine</span> Anti-convulsant, anti-addictive CNS stimulant alkaloid

Ibogamine is an anti-convulsant, anti-addictive, CNS stimulant alkaloid found in Tabernanthe iboga and Crepe Jasmine. Basic research related to how addiction affects the brain has used this chemical.

<span class="mw-page-title-main">Tabernanthine</span> Chemical compound

Tabernanthine is an alkaloid found in Tabernanthe iboga.

<span class="mw-page-title-main">ICI-199,441</span> Chemical compound

ICI-199,441 is a drug which acts as a potent and selective κ-opioid agonist, and has analgesic effects. It is a biased agonist of the KOR, and is one of relatively few KOR ligands that is G protein-biased rather than β-arrestin-biased.

<span class="mw-page-title-main">2-Methoxyethyl-18-methoxycoronaridinate</span> Chemical compound

(−)-2-Methoxyethyl-18-methoxycoronaridinate (ME-18-MC) is a second generation synthetic derivative of ibogaine developed by the research team led by the pharmacologist Stanley D. Glick from the Albany Medical College and the chemist Martin E. Kuehne from the University of Vermont. In animal studies it has shown similar efficacy to the related compound 18-methoxycoronaridine (18-MC) at reducing self-administration of morphine and methamphetamine but with higher potency by weight, showing anti-addictive effects at the equivalent of half the minimum effective dose of 18-MC. Similarly to 18-MC itself, ME-18-MC acts primarily as a selective α3β4 nicotinic acetylcholine antagonist, although it has a slightly stronger effect than 18-MC as an NMDA antagonist, and its effects on opioid receptors are weaker than those of 18-MC at all except the kappa opioid receptor, at which it has slightly higher affinity than 18-MC.

<span class="mw-page-title-main">Mitragynine pseudoindoxyl</span> Opioid analgesic compound

Mitragynine pseudoindoxyl is a rearrangement product of 7-hydroxymitragynine, an active metabolite of mitragynine.

<span class="mw-page-title-main">6'-Guanidinonaltrindole</span> Chemical compound

6′-Guanidinonaltrindole (6′-GNTI) is a κ–δ-opioid receptor selective ligand used in scientific research.

<span class="mw-page-title-main">RB-64</span> Chemical compound

RB-64 is a semi-synthetic derivative of salvinorin A. It is an irreversible agonist, with a reactive thiocyanate group that forms a bond to the κ-opioid receptor (KOR), resulting in very high potency. It is functionally selective, activating G proteins more potently than β-arrestin-2. RB-64 has a bias factor of up to 96 and is analgesic with fewer of the side-effects associated with unbiased KOR agonists. The analgesia is long-lasting. Compared with unbiased agonists, RB-64 evokes considerably less receptor internalization.

Iboga-type alkaloids are a set of monoterpene indole alkaloids comprising naturally occurring compounds found in Tabernanthe and Tabernaemontana, as well as synthetic structural analogs. Naturally occurring iboga-type alkaloids include ibogamine, ibogaine, tabernanthine, and other substituted ibogamines. Many iboga-type alkaloids display biological activities such as cardiac toxicity and psychoactive effects, and some have been studied as potential treatments for drug addiction.

<span class="mw-page-title-main">PZM21</span> Chemical compound

PZM21 is an experimental opioid analgesic drug that is being researched for the treatment of pain. It is claimed to be a functionally selective μ-opioid receptor agonist which produces μ-opioid receptor mediated G protein signaling, with potency and efficacy similar to morphine, but with less β-arrestin 2 recruitment. However, recent reports highlight that this might be due to its low intrinsic efficacy, rather than functional selectivity or 'G protein bias' as initially reported. In tests on mice, PZM21 was slightly less potent than morphine or TRV130 as an analgesic, but also had significantly reduced adverse effects, with less constipation than morphine, and very little respiratory depression, even at high doses. This research was described as a compelling example of how modern high-throughput screening techniques can be used to discover new chemotypes with specific activity profiles, even at targets such as the μ-opioid receptor which have already been thoroughly investigated. More recent research has suggested however that at higher doses, PZM21 is capable of producing classic opioid side effects such as respiratory depression and development of tolerance and may have only limited functional selectivity.

<span class="mw-page-title-main">Collybolide</span> Chemical compound

Collybolide is a secondary metabolite of the Rhodocollybia maculata mushroom, a basidiomycete fungus that grows on rotting conifer wood. It was previously believed to be a potent and selective kappa-opioid receptor agonist. However, a total synthesis and independent biological assay determined that collybolide neither excites nor suppresses kappa-opioid receptor signaling. Collybolide is unlikely to be psychoactive, although it has been shown to inhibit L-type calcium channels in isolated rat aorta.

References

  1. Mash DC, Ameer B, Prou D, Howes JF, Maillet EL (2016). "Oral noribogaine shows high brain uptake and anti-withdrawal effects not associated with place preference in rodents". J. Psychopharmacol. (Oxford). 30 (7): 688–97. doi:10.1177/0269881116641331. PMID   27044509. S2CID   40776971.
  2. Glick SD, Maisonneuve IS (May 1998). "Mechanisms of antiaddictive actions of ibogaine". Annals of the New York Academy of Sciences. 844 (1): 214–26. Bibcode:1998NYASA.844..214G. doi:10.1111/j.1749-6632.1998.tb08237.x. PMID   9668680. S2CID   11416176.
  3. Baumann MH, Pablo J, Ali SF, Rothman RB, Mash DC (2001). "Comparative neuropharmacology of ibogaine and its O-desmethyl metabolite, noribogaine". The Alkaloids: Chemistry and Biology. 56: 79–113. doi:10.1016/S0099-9598(01)56009-5. PMID   11705118.
  4. Kubiliene A, Marksiene R, Kazlauskas S, Sadauskiene I, Razukas A, Ivanov L (2008). "Acute toxicity of ibogaine and noribogaine". Medicina. 44 (12): 984–8. doi: 10.3390/medicina44120123 . PMID   19142057.
  5. Max M. Houck (26 January 2015). Forensic Chemistry. Elsevier Science. pp. 164–. ISBN   978-0-12-800624-5.
  6. Baumann MH, Rothman RB, Pablo JP, Mash DC (May 2001). "In vivo neurobiological effects of ibogaine and its O-desmethyl metabolite, 12-hydroxyibogamine (noribogaine), in rats". The Journal of Pharmacology and Experimental Therapeutics. 297 (2): 531–539. PMID   11303040.
  7. Paul Gahlinger (30 December 2003). Illegal Drugs. Penguin Publishing Group. pp. 304–. ISBN   978-1-4406-5024-6.
  8. Alper KR, Glick SD (2001). Ibogaine: Proceedings from the First International Conference. Gulf Professional Publishing. pp. 107–. ISBN   978-0-12-053206-3.
  9. Donald G. Barceloux (20 March 2012). Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. John Wiley & Sons. pp. 869–. ISBN   978-0-471-72760-6.
  10. Pearl SM, Herrick-Davis K, Teitler M, Glick SD (March 1995). "Radioligand-binding study of noribogaine, a likely metabolite of ibogaine". Brain Research. 675 (1–2): 342–344. doi:10.1016/0006-8993(95)00123-8. PMID   7796150. S2CID   28001919.
  11. Alper K, Bai R, Liu N, Fowler SJ, Huang XP, Priori SG, Ruan Y (2016). "hERG Blockade by Iboga Alkaloids". Cardiovasc. Toxicol. 16 (1): 14–22. doi:10.1007/s12012-015-9311-5. PMID   25636206. S2CID   16071274.
  12. Litjens RP, Brunt TM (2016). "How toxic is ibogaine?". Clin Toxicol. 54 (4): 297–302. doi:10.3109/15563650.2016.1138226. PMID   26807959. S2CID   7026570.
  13. 1 2 3 4 5 Maillet EL, Milon N, Heghinian MD, Fishback J, Schürer SC, Garamszegi N, Mash DC (2015). "Noribogaine is a G-protein biased κ-opioid receptor agonist". Neuropharmacology. 99: 675–88. doi: 10.1016/j.neuropharm.2015.08.032 . PMID   26302653.
  14. Ehrich JM, Messinger DI, Knakal CR, Kuhar JR, Schattauer SS, Bruchas MR, Zweifel LS, Kieffer BL, Phillips PE, Chavkin C (2015). "Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons". J. Neurosci. 35 (37): 12917–31. doi:10.1523/JNEUROSCI.2444-15.2015. PMC   4571610 . PMID   26377476.
  15. Havel V, Kruegel AC, Bechand B, et al. (2024). "Oxa-Iboga alkaloids lack cardiac risk and disrupt opioid use in animal models". Nat Commun. 15 (1): 8118. doi:10.1038/s41467-024-51856-y. PMC   11415492 . PMID   39304653.