Levomethorphan

Last updated
Levomethorphan
Levomethorphan.svg
Levometorfan.png
Clinical data
Dependence
liability
High
Addiction
liability
High
ATC code
  • None
Legal status
Legal status
Pharmacokinetic data
Elimination half-life 3-6 hours
Identifiers
  • (1R,9R,10R)-4-methoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5-triene
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.004.320 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C18H25NO
Molar mass 271.404 g·mol−1
3D model (JSmol)
  • COc1ccc2C[C@@H]3[C@@H]4CCCC[C@]4(CCN3C)c2c1
  • InChI=1S/C18H25NO/c1-19-10-9-18-8-4-3-5-15(18)17(19)11-13-6-7-14(20-2)12-16(13)18/h6-7,12,15,17H,3-5,8-11H2,1-2H3/t15-,17+,18+/m0/s1 Yes check.svgY
  • Key:MKXZASYAUGDDCJ-CGTJXYLNSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Levomethorphan (LVM) (INN, BAN) is an opioid analgesic of the morphinan family that has never been marketed. [2] It is the L-stereoisomer of racemethorphan (methorphan). [2] The effects of the two isomers of racemethorphan are quite different, with dextromethorphan (DXM) being an antitussive at low doses and a dissociative hallucinogen at much higher doses. [3] Levomethorphan is about five times stronger than morphine. [4]

Levomethorphan is a prodrug to levorphanol, analogously to DXM acting as a prodrug to dextrorphan or codeine behaving as a prodrug to morphine. [5] As such, levomethorphan has similar effects to levorphanol but is less potent as it must be demethylated to the active form by liver enzymes before being able to produce its effects. [5] As a prodrug of levorphanol, levomethorphan functions as a potent agonist of all three of the opioid receptors, μ, κ1 and κ3 but notably not κ2), and δ, as an NMDA receptor antagonist, and as a serotonin-norepinephrine reuptake inhibitor. [5] Via activation of the κ-opioid receptor, levomethorphan can produce dysphoria and psychotomimetic effects such as dissociation and hallucinations. [6]

Levomethorphan is listed under the Single Convention on Narcotic Drugs 1961 and is regulated like morphine in most countries. In the United States it is a Schedule II Narcotic controlled substance with a DEA ACSCN of 9210 and a 2014 annual aggregate manufacturing quota of 195 grams, up from 6 grams the year before. The salts in use are the tartrate (free base conversion ratio 0.644) and hydrobromide (0.958). [7] At the current time[ when? ], no levomethorphan pharmaceuticals are marketed in the United States.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Recreational use of dextromethorphan</span> Cough suppressant drug susceptible to misuse.

Dextromethorphan, or DXM, a common active ingredient found in many over-the-counter cough suppressant cold medicines, is used as a recreational drug and entheogen for its dissociative effects. Street names include Brownies, Dextro, Drix, Gel, Groove, Lean, Mega-perls, Poor man's ecstasy, Poor man's PCP, Red devils, Robo, Rojo, Rome, Skittles, Sizzurp, Triple Cs, Sky and Velvet.

<span class="mw-page-title-main">Pentazocine</span> Opioid medication

Pentazocine, sold under the brand name Talwin among others, is a painkiller used to treat moderate to severe pain. It is believed to work by activating (agonizing) κ-opioid receptors (KOR) and μ-opioid receptors (MOR). As such it is called an opioid as it delivers its effects on pain by interacting with the opioid receptors. It shares many of the side effects of other opioids like constipation, nausea, itching, drowsiness and respiratory depression, but unlike most other opioids it fairly frequently causes hallucinations, nightmares and delusions. It is also, unlike most other opioids, subject to a ceiling effect, which is when at a certain dose no more pain relief is obtained by increasing the dose any further.

<span class="mw-page-title-main">Carfentanil</span> Synthetic opioid analgesic

Carfentanil or carfentanyl, sold under the brand name Wildnil, is an extremely potent opioid analgesic used in veterinary medicine to anesthetize large animals such as elephants and rhinoceroses. It is an analogue of fentanyl, of which it is structurally derivative. It is typically administered in this context by tranquilizer dart. Carfentanil has also been used in humans to image opioid receptors. It has additionally been used as a recreational drug, typically by injection, insufflation, or inhalation. Deaths have been reported in association with carfentanil.

<span class="mw-page-title-main">Dextrorphan</span> Psychoactive cough suppressant medication

Dextrorphan (DXO) is a psychoactive drug of the morphinan class which acts as an antitussive or cough suppressant and in high doses a dissociative hallucinogen. It is the dextrorotatory enantiomer of racemorphan; the levorotatory enantiomer is levorphanol. Dextrorphan is produced by O-demethylation of dextromethorphan by CYP2D6. Dextrorphan is an NMDA antagonist and contributes to the psychoactive effects of dextromethorphan.

<span class="mw-page-title-main">Nalbuphine</span> Opioid analgesic

Nalbuphine, sold under the brand names Nubain among others, is an opioid analgesic which is used in the treatment of pain. It is given by injection into a vein, muscle, or fat.

<span class="mw-page-title-main">Dihydromorphine</span> Semi-synthetic opioid analgesic drug

Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. Dihydromorphine is a moderately strong analgesic and is used clinically in the treatment of pain and also is an active metabolite of the analgesic opioid drug dihydrocodeine. Dihydromorphine occurs in trace quantities in assays of opium on occasion, as does dihydrocodeine, dihydrothebaine, tetrahydrothebaine, etc. The process for manufacturing dihydromorphine from morphine for pharmaceutical use was developed in Germany in the late 19th century, with the synthesis being published in 1900 and the drug introduced clinically as Paramorfan shortly thereafter. A high-yield synthesis from tetrahydrothebaine was later developed.

<span class="mw-page-title-main">Butorphanol</span> Opioid analgesic

Butorphanol is a morphinan-type synthetic agonist–antagonist opioid analgesic developed by Bristol-Myers. Butorphanol is most closely structurally related to levorphanol. Butorphanol is available as the tartrate salt in injectable, tablet, and intranasal spray formulations. The tablet form is only used in dogs, cats and horses due to low bioavailability in humans.

<span class="mw-page-title-main">Levorphanol</span> Opioid analgesic drug

Levorphanol is an opioid medication used to treat moderate to severe pain. It is the levorotatory enantiomer of the compound racemorphan. Its dextrorotatory counterpart is dextrorphan.

<span class="mw-page-title-main">Morphinan</span> Parent compound of opiates/opioids

Morphinan is the prototype chemical structure of a large chemical class of psychoactive drugs, consisting of opiate analgesics, cough suppressants, and dissociative hallucinogens, among others. Typical examples include compounds such as morphine, codeine, and dextromethorphan (DXM). Despite related molecular structures, the pharmacological profiles and mechanisms of action between the various types of morphinan substances can vary substantially. They tend to function either as μ-opioid receptor agonists (analgesics), or NMDA receptor antagonists (dissociatives).

<span class="mw-page-title-main">Methorphan</span> Group of stereoisomers

Methorphan comes in two isomeric forms, each with differing pharmacology and effects:

<span class="mw-page-title-main">Piritramide</span> Synthetic opioid

Piritramide(R-3365, trade names Dipidolor, Piridolan, Pirium and others) is a synthetic opioid analgesic that is marketed in certain European countries including: Austria, Belgium, Czech Republic, Slovenia, Germany and the Netherlands. It comes in free form, is about 0.75x times as potent as morphine and is given parenterally for the treatment of severe pain. Nausea, vomiting, respiratory depression and constipation are believed to be less frequent with piritramide than with morphine, and it produces more rapid-onset analgesia when compared to morphine and pethidine. After intravenous administration the onset of analgesia is as little as 1–2 minutes, which may be related to its great lipophilicity. The analgesic and sedative effects of piritramide are believed to be potentiated with phenothiazines and its emetic (nausea/vomiting-inducing) effects are suppressed. The volume of distribution is 0.7-1 L/kg after a single dose, 4.7-6 L/kg after steady-state concentrations are achieved and up to 11.1 L/kg after prolonged dosing.

<span class="mw-page-title-main">Nalorphine</span> Chemical compound

Nalorphine is a mixed opioid agonist–antagonist with opioid antagonist and analgesic properties. It was introduced in 1954 and was used as an antidote to reverse opioid overdose and in a challenge test to determine opioid dependence.

<span class="mw-page-title-main">Phenazocine</span> Opioid analgesic

Phenazocine is an opioid analgesic drug, which is related to pentazocine and has a similar profile of effects.

<span class="mw-page-title-main">Oxilorphan</span> Chemical compound

Oxilorphan is an opioid antagonist of the morphinan family that was never marketed. It acts as a μ-opioid receptor (MOR) antagonist but a κ-opioid receptor (KOR) partial agonist, and has similar effects to naloxone and around the same potency as an MOR antagonist. Oxilorphan has some weak partial agonist actions at the MOR and can produce hallucinogenic/dissociative effects at sufficient doses, indicative of KOR activation. It was trialed for the treatment of opioid addiction, but was not developed commercially. The KOR agonist effects of oxilorphan are associated with dysphoria, which combined with its hallucinogenic effects, serve to limit its clinical usefulness; indeed, many patients who experienced these side effects refused to take additional doses in clinical trials.

<span class="mw-page-title-main">Myrophine</span> Chemical compound

Myrophine (Myristylbenzylmorphine) is an opiate analogue that was developed in 1952. It is a derivative of morphine.

<span class="mw-page-title-main">Levallorphan</span> Opioid medication

Levallorphan, also known as levallorphan tartrate (USAN), is an opioid modulator of the morphinan family used as an opioid analgesic and opioid antagonist/antidote. It acts as an antagonist of the μ-opioid receptor (MOR) and as an agonist of the κ-opioid receptor (KOR), and as a result, blocks the effects of stronger agents with greater intrinsic activity such as morphine whilst simultaneously producing analgesia.

<span class="mw-page-title-main">Hydromorphinol</span> Opioid analgesic drug

Hydromorphinol, is an opiate analogue that is a derivative of morphine, where the 14-position has been hydroxylated and the 7,8- double bond saturated. It has similar effects to morphine such as sedation, analgesia and respiratory depression, but is twice as potent as morphine and has a steeper dose-response curve and longer half-life. It is used in medicine as the bitartrate salt and hydrochloride

<span class="mw-page-title-main">Normorphine</span> Chemical compound

Normorphine is an opiate analogue, the N-demethylated derivative of morphine, that was first described in the 1950s when a large group of N-substituted morphine analogues were characterized for activity. The compound has relatively little opioid activity in its own right, but is a useful intermediate which can be used to produce both opioid antagonists such as nalorphine, and also potent opioid agonists such as N-phenethylnormorphine. with its formation from morphine catalyzed by the liver enzymes CYP3A4 and CYP2C8.

<span class="mw-page-title-main">Xorphanol</span> Opioid analgesic

Xorphanol (INN), also known as xorphanol mesylate (USAN), is an opioid analgesic of the morphinan family that was never marketed.

<span class="mw-page-title-main">Racemorphan</span> Racemic mixture

Racemorphan, or morphanol, is the racemic mixture of the two stereoisomers of 17-methylmorphinan-3-ol, each with differing pharmacology and effects:

References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-16.
  2. 1 2 Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springe. pp. 656–. ISBN   978-1-4757-2085-3.
  3. Hornback JM (31 January 2005). Organic Chemistry. Cengage Learning. pp. 243–. ISBN   0-534-38951-1.
  4. Wainer IW (1996). "Toxicology Through a Looking Glass: Stereochemical Questions and Some Answers". In Wong SH, Sunshine I (eds.). Handbook of Analytical Therapeutic Drug Monitoring and Toxicology. CRC Press. ISBN   9780849326486.
  5. 1 2 3 Gudin J, Fudin J, Nalamachu S (January 2016). "Levorphanol use: past, present and future". Postgraduate Medicine. 128 (1): 46–53. doi:10.1080/00325481.2016.1128308. PMID   26635068. S2CID   3912175.
  6. Bruera ED, Portenoy RK (12 October 2009). Cancer Pain: Assessment and Management. Cambridge University Press. pp. 215–. ISBN   978-0-521-87927-9.
  7. "Conversion Factors for Controlled Substances". DEA Diversion Control Division. U.S. Department of Justice, Drug Enforcement Administration (DEA). Archived from the original on 2016-03-02. Retrieved 2014-06-18.