Corymine

Last updated
Corymine
Corymine.svg
Names
IUPAC name
Methyl (15E)-15-ethylidene-18-hydroxy-3-methyl-19-oxa-3,13-diazahexacyclo[14.3.1.02,10.02,13.04,9.010,17]icosa-4,6,8-triene-17-carboxylate
Other names
  • NSC381080
  • Corymin
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • Key: KRTMWLRPHKYUJX-PQMHYQBVSA-N
  • InChI=1S/C22H26N2O4/c1-4-13-12-24-10-9-20-14-7-5-6-8-16(14)23(2)22(20,24)17-11-15(13)21(20,18(25)27-3)19(26)28-17/h4-8,15,17,19,26H,9-12H2,1-3H3/b13-4-
  • CC=C1CN2CCC34C2(C5CC1C3(C(O5)O)C(=O)OC)N(C6=CC=CC=C46)C
Properties
C22H26N2O4
Molar mass 382.460 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Corymine, also known as NSC381080, is a natural alkaloid found in Hunteria zeylanica .

Contents

This compound acts as a glycine antagonist and could therefore, be classed as a neurotoxin.

Occurrence

Corymine and many other indole alkaloids can be isolated from parts of the Hunteria zeylanica plant.

The plant also contains other similar alkaloids, such as [1]

Toxicity

Corymine and related alkaloids can act as convulsants. [2]

Tests on Xenopus occyte species have shown that corymine can decrease glycine's action at the inhibitory glycine receptors. [3] These same tests have revealed that Corymine can reduce the response of receptors to GABA, [3] the primary inhibitory neurotransmitter.

Other experiments have shown that corymine can potentiate convulsions induced by strychnine, a potent glycine antagonist. [4] This was also observed in mice. [5]

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Enflurane</span> Chemical compound

Enflurane is a halogenated ether. Developed by Ross Terrell in 1963, it was first used clinically in 1966. It was increasingly used for inhalational anesthesia during the 1970s and 1980s but is no longer in common use.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions (Cl) and, to a lesser extent, bicarbonate ions (HCO3).

<span class="mw-page-title-main">Glycine receptor</span> Widely distributed inhibitory receptor in the central nervous system

The glycine receptor is the receptor of the amino acid neurotransmitter glycine. GlyR is an ionotropic receptor that produces its effects through chloride current. It is one of the most widely distributed inhibitory receptors in the central nervous system and has important roles in a variety of physiological processes, especially in mediating inhibitory neurotransmission in the spinal cord and brainstem.

<span class="mw-page-title-main">Voacangine</span> Chemical compound

Voacangine is an alkaloid found predominantly in the root bark of the Voacanga africana tree, as well as in other plants such as Tabernanthe iboga, Tabernaemontana africana, Trachelospermum jasminoides, Tabernaemontana divaricata and Ervatamia yunnanensis. It is an iboga alkaloid which commonly serves as a precursor for the semi-synthesis of ibogaine. It has been demonstrated in animals to have similar anti-addictive properties to ibogaine itself. It also potentiates the effects of barbiturates. Under UV-A and UV-B light its crystals fluoresce blue-green, and it is soluble in ethanol.

<span class="mw-page-title-main">Oxindole</span> Chemical compound

Oxindole (2-indolone) is an aromatic heterocyclic organic compound with the formula C6H4CHC(O)NH. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered nitrogen-containing ring. Oxindole is a modified indoline with a substituted carbonyl at the second position of the 5-member indoline ring. Classified as a cyclic amide, it is a pale yellow solid.

<span class="mw-page-title-main">7-Hydroxymitragynine</span> Alkaloid analgesic compound

7-Hydroxymitragynine (7-OH) is a terpenoid indole alkaloid from the plant Mitragyna speciosa, commonly known as kratom. It was first described in 1994 and is a natural product derived from the mitragynine present in the kratom leaf. 7-OH binds to opioid receptors like mitragynine, but research suggests that 7-OH binds with greater potency.

<span class="mw-page-title-main">CHRNA7</span> Protein-coding gene in the species Homo sapiens

Neuronal acetylcholine receptor subunit alpha-7, also known as nAChRα7, is a protein that in humans is encoded by the CHRNA7 gene. The protein encoded by this gene is a subunit of certain nicotinic acetylcholine receptors (nAchR).

<span class="mw-page-title-main">CHRNB4</span> Protein-coding gene in the species Homo sapiens

Neuronal acetylcholine receptor subunit beta-4 is a protein that in humans is encoded by the CHRNB4 gene.

<span class="mw-page-title-main">Propylnorapomorphine</span> Chemical compound

N-n-Propylnorapomorphine (NPA) is an aporphine derivative dopamine agonist closely related to apomorphine. In rodents it has been shown to produce hyperactivity, stereotypy, hypothermia, antinociception, and penile erection, among other effects. Notably, its effects on locomotion are biphasic, with low doses producing inhibition and catalepsy and high doses resulting in enhancement of activity. This is likely due to preferential activation of D2/D3 autoreceptors versus postsynaptic receptors, the latter of which overcomes the former to increase postsynaptic dopaminergic signaling only with high doses.

<span class="mw-page-title-main">Tetrazolylglycine</span> Chemical compound

Tetrazolylglycine is a potent and selective NMDA receptor agonist, stimulating the NMDA receptor with higher potency than either glutamate or NMDA. It is a potent convulsant and excitotoxin and is used in scientific research.

<span class="mw-page-title-main">Rhynchophylline</span> Chemical compound

Rhynchophylline is an alkaloid found in certain Uncaria species (Rubiaceae), notably Uncaria rhynchophylla and Uncaria tomentosa. It also occurs in the leaves of Mitragyna speciosa (kratom), a tree native to Thailand. Chemically, it is related to the alkaloid mitragynine.

<span class="mw-page-title-main">Adenosine reuptake inhibitor</span> Drug class

An adenosine reuptake inhibitor (AdoRI) is a type of drug which acts as a reuptake inhibitor for the purine nucleoside and neurotransmitter adenosine by blocking the action of one or more of the equilibrative nucleoside transporters (ENTs). This in turn leads to increased extracellular concentrations of adenosine and therefore an increase in adenosinergic neurotransmission.

<span class="mw-page-title-main">Barakol</span> Chemical compound

Barakol is a compound found in the plant Senna siamea, which is used in traditional herbal medicine. It has sedative and anxiolytic effects. There are contradictory pharmacological research findings concerning the toxicity of Cassia siamea and the active ingredient Barakol. One pharmacological study has shown an hepatoxic effect of Barakol while another study did not show any toxic effect at a daily dosage intake. Further research is needed to verify whether there are toxic effects of Barakol or not.

<span class="mw-page-title-main">A-68930</span> Chemical compound

A-68930 is a synthetic compound that acts as a selective dopamine receptor D1 agonist. It is orally active and has antidepressant and anorectic effects in animals, producing wakefulness and tachycardia, but without stimulant effects, instead producing sedation. The difference in effects between A-68930 and other D1 agonists such as SKF-82958 may be due to their differing effects on the related D5 receptor.

<span class="mw-page-title-main">Pitrazepin</span> Chemical compound

Pitrazepin is a competitive GABAA and glycine receptor antagonist. It has been used to study insect and snail nervous systems in scientific research.

<span class="mw-page-title-main">BD1008</span> Chemical compound

BD1008 or N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-1-pyrrolidineethanamine is a selective sigma receptor antagonist, with a reported binding affinity of Ki = 2 ± 1 nM for the sigma-1 receptor and 4 times selectivity over the sigma-2 receptor.

<span class="mw-page-title-main">HA-966</span> Chemical compound

HA-966 or (±)-3-amino-1-hydroxy-pyrrolidin-2-one is a molecule used in scientific research as a glycine receptor and NMDA receptor antagonist / low efficacy partial agonist. It has neuroprotective and anticonvulsant, anxiolytic, antinociceptive and sedative / hypnotic effects in animal models. Pilot human clinical trials in the early 1960s showed that HA-966 appeared to benefit patients with tremors of extrapyramidal origin.

<i>Picralima</i> Genus of flowering plants

Picralima is a plant genus in the family Apocynaceae, first described as a genus in 1896. It contains only one known species, Picralima nitida, native to tropical Africa.

Phil Skolnick is an American neuroscientist and pharmacologist most widely known for his work on the psychopharmacology of depression and anxiety, as well as on addiction medicine. Author of more than 500 published papers, Skolnick's most notable accomplishments include elucidating the role of the NMDA system in depression therapeutics, demonstrating the existence of endogenous benzodiazepine receptor ligands, and spearheading the National Institute on Drug Abuse's partnership to develop a naloxone atomizer for reversal of acute opioid overdose. Skolnick's work also laid the foundation for the development of ketamine as a rapid-acting antidepressant.

References

  1. Lavaud, C.; Massiot, G.; Vercauteren, J.; Le Men-olivier, L. (1982-01-01). "Alkaloids of Hunteria zeylanica". Phytochemistry. 21 (2): 445–447. Bibcode:1982PChem..21..445L. doi:10.1016/S0031-9422(00)95285-3. ISSN   0031-9422.
  2. PubChem. "Corymine - Associated Disorders and Diseases". pubchem.ncbi.nlm.nih.gov. Retrieved 2024-02-01.
  3. 1 2 Leewanich, P.; Tohda, M.; Matsumoto, K.; Subhadhirasakul, S.; Takayama, H.; Aimi, N.; Watanabe, H. (1997-08-13). "Inhibitory effects of corymine, an alkaloidal component from the leaves of Hunteria zeylanica, on glycine receptors expressed in Xenopus oocytes". European Journal of Pharmacology. 332 (3): 321–326. doi:10.1016/s0014-2999(97)01097-2. ISSN   0014-2999. PMID   9300267.
  4. Leewanich, P.; Tohda, M.; Matsumoto, K.; Subhadhirasakul, S.; Takayama, H.; Aimi, N.; Watanabe, H. (1998-05-08). "A possible mechanism underlying corymine inhibition of glycine-induced Cl- current in Xenopus oocytes". European Journal of Pharmacology. 348 (2–3): 271–277. doi:10.1016/s0014-2999(98)00147-2. ISSN   0014-2999. PMID   9652343.
  5. Leewanich, P.; Tohda, M.; Matsumoto, K.; Subhadhirasakul, S.; Takayama, H.; Aimi, N.; Watanabe, H. (March 1996). "Behavioral studies on alkaloids extracted from the leaves of Hunteria zeylanica". Biological & Pharmaceutical Bulletin. 19 (3): 394–399. doi:10.1248/bpb.19.394. ISSN   0918-6158. PMID   8924908.