Nitrendipine

Last updated
Nitrendipine
(RS)-Nitrendipin Structural Formula V1.svg
Nitrendipine-3D-balls.png
Clinical data
Trade names Baypress
AHFS/Drugs.com International Drug Names
Routes of
administration
By mouth
ATC code
Pharmacokinetic data
Bioavailability 60–70%
Protein binding 98%
Metabolism Hepatic (completely)
Onset of action 1–2 hours
Elimination half-life 8–24 hours
Excretion Urine (30%)
Identifiers
  • (RS)-3-Ethyl 5-methyl 2,6-dimethyl-4-(m-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.049.540 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C18H20N2O6
Molar mass 360.366 g·mol−1
3D model (JSmol)
Chirality Racemic mixture
Melting point 158 °C (316 °F)
  • O=C(OCC)\C1=C(\N/C(=C(/C(=O)OC)C1c2cccc([N+]([O-])=O)c2)C)C
  • InChI=1S/C18H20N2O6/c1-5-26-18(22)15-11(3)19-10(2)14(17(21)25-4)16(15)12-7-6-8-13(9-12)20(23)24/h6-9,16,19H,5H2,1-4H3 Yes check.svgY
  • Key:PVHUJELLJLJGLN-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Nitrendipine is a dihydropyridine calcium channel blocker. It is used in the treatment of primary (essential) hypertension to decrease blood pressure and can reduce the cardiotoxicity of cocaine. [1]

Contents

It was patented in 1971 and approved for medical use in 1985. [2]

Medical uses

Nitrendipine is given to hypertensive individuals in 20 mg oral tablets every day. [3] This amount is effective in reducing blood pressure by 15–20% within 1–2 hours of administration. [3] With long-term treatments, the dosage may rise to as much as 40 mg/day; in elderly individuals, a lower dosage of up to 5 mg/day may be equally effective (this reduction in drug amount is attributed to decreased liver function or “first pass” metabolism). [3] Once digested, nitrendipine is absorbed into the blood and binds to plasma proteins. The majority (98%) is bound to plasma proteins and 70-80% of its inactive polar metabolites are also bound to plasma proteins. [3] Following hepatic metabolism, 80% of the 20 mg dose can be recovered in the first 96 hours as inactive polar metabolites. The specific volume of distribution of the drug is 2-6 L/kg. In terms of drug half-life, nitrendipine has a half-life of 12–24 hours. [3] The reported side effects include: headache, flushing, edema and palpitations. These side effects can all be attributed to the vasodilation effect of this drug. [3]

Mechanism of action

Once nitrendipine is ingested, it is absorbed by the gut and metabolized by the liver before it goes into the systemic circulation and reaches the cells of the smooth muscles and cardiac muscle cells. It binds more effectively with L-type calcium channels in smooth muscle cells because of its lower resting membrane potential. [4] The nitrendipine diffuses into the membrane and binds to its high affinity binding site on the inactivated L-type calcium channel that's located in between each of the 4 intermembrane components of the α1 subunit. [4] The exact mechanism of action of nitrendipine is unknown, but it is believed to have important tyrosine and threonine residues in its binding pocket and its binding interferes with the voltage sensor and gating mechanism of the channel. [4] Thought to have a domain-interface model of binding. In hypertension, the binding of nitrendipine causes a decrease in the probability of open L-type calcium channels and reduces the influx of calcium. The reduced levels of calcium prevent smooth muscle contraction within these muscle cells. Prevention of muscle contraction enables smooth muscle dilation. Dilation of the vasculature reduces total peripheral resistance, which decreases the workload on the heart and prevents scarring of the heart or heart failure.

Nitrendipine has additionally been found to act as an antagonist of the mineralocorticoid receptor, or as an antimineralocorticoid. [5]

Stereochemistry

Nitrendipine contains a stereocenter and can exist as either of two enantiomers. The pharmaceutical drug is a racemate, an equal mixture of (R)- and the (S)-forms. [6]

Enantiomers of Nitrendipine
(R)-Nitrendipin Structural Formula V1.svg
(R)-(+)-Nitrendipine
CAS number: 80890-07-9
(S)-Nitrendipin Structural Formula V1.svg
(S)-(-)-Nitrendipine
CAS number: 80873-62-7

Related Research Articles

Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are a group of medications that disrupt the movement of calcium through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as medications to decrease blood pressure in patients with hypertension. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients. Calcium channel blockers are also frequently used to alter heart rate, to prevent peripheral and cerebral vasospasm, and to reduce chest pain caused by angina pectoris.

<span class="mw-page-title-main">Smooth muscle</span> Involuntary non-striated muscle

Smooth muscle is an involuntary non-striated muscle, so-called because it has no sarcomeres and therefore no striations. It is divided into two subgroups, single-unit and multiunit smooth muscle. Within single-unit muscle, the whole bundle or sheet of smooth muscle cells contracts as a syncytium.

<span class="mw-page-title-main">Calcium in biology</span> Use of calcium by organisms

Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contraction of all muscle cell types, and in fertilization. Many enzymes require calcium ions as a cofactor, including several of the coagulation factors. Extracellular calcium is also important for maintaining the potential difference across excitable cell membranes, as well as proper bone formation.

<span class="mw-page-title-main">Calcium metabolism</span> Movement and regulation of calcium ions in and out of the body

Calcium metabolism is the movement and regulation of calcium ions (Ca2+) in (via the gut) and out (via the gut and kidneys) of the body, and between body compartments: the blood plasma, the extracellular and intracellular fluids, and bone. Bone acts as a calcium storage center for deposits and withdrawals as needed by the blood via continual bone remodeling.

<span class="mw-page-title-main">Verapamil</span> Calcium channel blocker medication

Verapamil, sold under various trade names, is a calcium channel blocker medication used for the treatment of high blood pressure, angina, and supraventricular tachycardia. It may also be used for the prevention of migraines and cluster headaches. It is given by mouth or by injection into a vein.

<span class="mw-page-title-main">Amlodipine</span> Dihydropyridine calcium channel blocker used to treat cardiovascular diseases

Amlodipine, sold under the brand name Norvasc among others, is a calcium channel blocker medication used to treat high blood pressure, coronary artery disease (CAD) and variant angina. It is taken orally.

<span class="mw-page-title-main">Nimodipine</span> Antihypertensive drug of the calcium channel blocker class

Nimodipine, sold under the brand name Nimotop among others, is calcium channel blocker used in preventing vasospasm secondary to subarachnoid hemorrhage. It was originally developed within the calcium channel blocker class as it was used for the treatment of high blood pressure, but is not used for this indication.

<span class="mw-page-title-main">Methylprednisolone</span> Corticosteroid medication

Methylprednisolone is a synthetic glucocorticoid, primarily prescribed for its anti-inflammatory and immunosuppressive effects. It is either used at low doses for chronic illnesses or used concomitantly at high doses during acute flares. Methylprednisolone and its derivatives can be administered orally or parenterally.

<span class="mw-page-title-main">Lercanidipine</span> Antihypertensive drug of the calcium channel blocker class

Lercanidipine is an antihypertensive drug. It belongs to the dihydropyridine class of calcium channel blockers, which work by relaxing and opening the blood vessels allowing the blood to circulate more freely around the body. This lowers the blood pressure and allows the heart to work more efficiently.

<span class="mw-page-title-main">Isradipine</span> Antihypertensive drug of the calcium channel blocker class

Isradipine is a calcium channel blocker of the dihydropyridine class. It is usually prescribed for the treatment of high blood pressure in order to reduce the risk of stroke and heart attack.

<span class="mw-page-title-main">Calciseptine</span> Neurotoxin

Calciseptine (CaS) is a natural neurotoxin isolated from the black mamba Dendroaspis p. polylepis venom. This toxin consists of 60 amino acids with four disulfide bonds. Calciseptine specifically blocks L-type calcium channels, but not other voltage-dependent Ca2+ channels such as N-type and T-type channels.

<span class="mw-page-title-main">L-type calcium channel</span> Family of transport proteins

The L-type calcium channel is part of the high-voltage activated family of voltage-dependent calcium channel. "L" stands for long-lasting referring to the length of activation. This channel has four isoforms: Cav1.1, Cav1.2, Cav1.3, and Cav1.4.

<span class="mw-page-title-main">Clevidipine</span> Antihypertensive drug of the calcium channel blocker class

Clevidipine is a dihydropyridine calcium channel blocker indicated for the reduction of blood pressure when oral therapy is not feasible or not desirable. Clevidipine is used IV only and practitioners titrate this drug to lower blood pressure. It has a half-life of approximately one minute. It is rapidly inactivated by esterases.

<span class="mw-page-title-main">Barnidipine</span> Antihypertensive drug of the calcium channel blocker class

Barnidipine is a calcium channel blocker which belongs to the dihydropyridine (DHP) group of calcium channel blockers. It is used in the treatment of hypertension.

<span class="mw-page-title-main">Efonidipine</span> Antihypertensive drug of the calcium channel blocker class

Efonidipine (INN) is a dihydropyridine calcium channel blocker marketed by Shionogi & Co. of Japan. It was launched in 1995, under the brand name Landel (ランデル). The drug blocks both T-type and L-type calcium channels. Drug Controller General of India (DCGI) has approved the use of efonidipine in India. It is launched under the brand name "Efnocar".

<span class="mw-page-title-main">Anipamil</span> Chemical compound

Anipamil is a calcium channel blocker, specifically of the phenylalkylamine type. This type is separate from its more common cousin Dihydropyridine. Anipamil is an analog of the more common drug verapamil, which is the most common type of phenylalkylamine style calcium channel blocker. Anipamil has been shown to be a more effective antiarrhythmic medication than verapamil because it does not cause hypertension as seen in verapamil. It is able to do this by bonding to the myocardium tighter than verapamil.

<span class="mw-page-title-main">Macitentan</span> Chemical compound

Macitentan, sold under the brand name Opsumit, is an endothelin receptor antagonist (ERA) developed by Actelion and approved for the treatment of pulmonary arterial hypertension (PAH). The other two ERAs marketed as of 2014 are bosentan and ambrisentan. Macitentan is a dual ERA, meaning that it acts as an antagonist of two endothelin (ET) receptor subtypes, ETA and ETB. However, macitentan has a 50-fold increased selectivity for the ETA subtype compared to the ETB subtype. The drug received approval from the U.S. Food and Drug Administration (FDA) on October 13, 2013.

<span class="mw-page-title-main">Levamlodipine</span> Chemical compound

Levamlodipine (INN), also known as levoamlodipine or S-amlodipine is a pharmacologically active enantiomer of amlodipine. Amlodipine belongs to the dihydropyridine group of calcium channel blocker used as an antihypertensive and antianginal agent. It was approved by the U.S. FDA in December 2019 and is currently marketed under the brand name Conjupri.

<span class="mw-page-title-main">Forasartan</span> Chemical compound

Forasartan, otherwise known as the compound SC-52458, is a nonpeptide angiotensin II receptor antagonist (ARB, AT1 receptor blocker).

<span class="mw-page-title-main">Lomerizine</span> Chemical compound

Lomerizine (INN) is a diphenylpiperazine class L-type and T-type calcium channel blocker. This drug is currently used clinically for the treatment of migraines, while also being used experimentally for the treatment of glaucoma and optic nerve injury.

References

  1. Trouve R, Nahas G (December 1986). "Nitrendipine: an antidote to cardiac and lethal toxicity of cocaine". Proceedings of the Society for Experimental Biology and Medicine. 183 (3): 392–397. doi:10.3181/00379727-183-3-rc1. PMID   3797422. S2CID   32137604.
  2. Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 464. ISBN   9783527607495.
  3. 1 2 3 4 5 6 Siddiqui MA, Plosker GL (2004). "Fixed-dose combination enalapril/nitrendipine: a review of its use in mild-to-moderate hypertension". Drugs. 64 (10): 1135–1148. doi:10.2165/00003495-200464100-00009. PMID   15139792. S2CID   46979688.
  4. 1 2 3 Peterson BZ, Tanada TN, Catterall WA (March 1996). "Molecular determinants of high affinity dihydropyridine binding in L-type calcium channels". The Journal of Biological Chemistry. 271 (10): 5293–5296. doi: 10.1074/jbc.271.10.5293 . PMID   8621376.
  5. Luther JM (September 2014). "Is there a new dawn for selective mineralocorticoid receptor antagonism?". Current Opinion in Nephrology and Hypertension. 23 (5): 456–461. doi:10.1097/MNH.0000000000000051. PMC   4248353 . PMID   24992570.
  6. Rote Liste Service GmbH (Hrsg.): Rote Liste 2017 – Arzneimittelverzeichnis für Deutschland (einschließlich EU-Zulassungen und bestimmter Medizinprodukte). Rote Liste Service GmbH, Frankfurt/Main, 2017, Aufl. 57, ISBN   978-3-946057-10-9, S. 204.