ALX-1393

Last updated
ALX-1393 [1]
ALX-1393.svg
Names
IUPAC name
(2S)-2-Amino-3-[(3-fluorophenyl)-(2-phenylmethoxyphenyl)methoxy]propanoic acid
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C23H22FNO4/c24-18-10-6-9-17(13-18)22(29-15-20(25)23(26)27)19-11-4-5-12-21(19)28-14-16-7-2-1-3-8-16/h1-13,20,22H,14-15,25H2,(H,26,27)/t20-,22?/m0/s1
    Key: ADUSZEGHFWRTQS-AIBWNMTMSA-N
  • C1=CC=C(C=C1)COC2=CC=CC=C2C(C3=CC(=CC=C3)F)OCC(C(=O)O)N
Properties
C23H22FNO4
Molar mass 395.430 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

ALX-1393 is a glycine reuptake inhibitor.

Pharmacodynamics

ALX-1393 works by inhibiting the action of GLYT2. [2] This causes elevated levels of glycine, an inhibitory neurotransmitter.

Contents

Potential uses

ALX-1393 has been shown to have potential as an analgesic. This is thought to be due to the elevated glycine levels reducing the transmission of the pain signals. [3]

Tests have shown that it was able to help reduce cancer pain in a potent way. [4]

Related Research Articles

<span class="mw-page-title-main">Anandamide</span> Chemical compound (fatty acid neurotransmitter)

Anandamide (ANA), also known as N-arachidonoylethanolamine (AEA), an N-acylethanolamine (NAE), is a fatty acid neurotransmitter. Anandamide was the first endocannabinoid to be discovered: it participates in the body's endocannabinoid system by binding to cannabinoid receptors, the same receptors that the psychoactive compound THC in cannabis acts on. Anandamide is found in nearly all tissues in a wide range of animals. Anandamide has also been found in plants, including small amounts in chocolate. The name 'anandamide' is taken from the Sanskrit word ananda, which means "joy, bliss, delight", plus amide.

<span class="mw-page-title-main">Serotonin–norepinephrine reuptake inhibitor</span> Class of antidepressant medication

Serotonin–norepinephrine reuptake inhibitors (SNRIs) are a class of antidepressant medications used to treat major depressive disorder (MDD), anxiety disorders, social phobia, chronic neuropathic pain, fibromyalgia syndrome (FMS), and menopausal symptoms. Off-label uses include treatments for attention-deficit hyperactivity disorder (ADHD), obsessive–compulsive disorder (OCD), and migraine prevention. SNRIs are monoamine reuptake inhibitors; specifically, they inhibit the reuptake of serotonin and norepinephrine. These neurotransmitters are thought to play an important role in mood regulation. SNRIs can be contrasted with the selective serotonin reuptake inhibitors (SSRIs) and norepinephrine reuptake inhibitors (NRIs), which act upon single neurotransmitters.

A dopamine reuptake inhibitor (DRI) is a class of drug which acts as a reuptake inhibitor of the monoamine neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). Reuptake inhibition is achieved when extracellular dopamine not absorbed by the postsynaptic neuron is blocked from re-entering the presynaptic neuron. This results in increased extracellular concentrations of dopamine and increase in dopaminergic neurotransmission.

<span class="mw-page-title-main">Lipoxin</span> Acronym for lipoxygenase interaction product

A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediators (SPMs) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during, and then act to resolve, inflammatory responses. Initially, two lipoxins were identified, lipoxin A4 (LXA4) and LXB4, but more recent studies have identified epimers of these two LXs: the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4 respectively.

<span class="mw-page-title-main">Norepinephrine transporter</span> Protein-coding gene in the species Homo sapiens

The norepinephrine transporter (NET), also known as noradrenaline transporter (NAT), is a protein that in humans is encoded by the solute carrier family 6 member 2 (SLC6A2) gene.

Neurotransmitter transporters are a class of membrane transport proteins that span the cellular membranes of neurons. Their primary function is to carry neurotransmitters across these membranes and to direct their further transport to specific intracellular locations. There are more than twenty types of neurotransmitter transporters.

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for human and non-human animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">GPR55</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 55 also known as GPR55 is a G protein-coupled receptor that in humans is encoded by the GPR55 gene.

<span class="mw-page-title-main">Chloride potassium symporter 5</span> Protein-coding gene in the species Homo sapiens

Potassium-chloride transporter member 5 is a neuron-specific chloride potassium symporter responsible for establishing the chloride ion gradient in neurons through the maintenance of low intracellular chloride concentrations. It is a critical mediator of synaptic inhibition, cellular protection against excitotoxicity and may also act as a modulator of neuroplasticity. Potassium-chloride transporter member 5 is also known by the names: KCC2 for its ionic substrates, and SLC12A5 for its genetic origin from the SLC12A5 gene in humans.

<span class="mw-page-title-main">Sodium- and chloride-dependent glycine transporter 1</span> Protein-coding gene in the species Homo sapiens

Sodium- and chloride-dependent glycine transporter 1, also known as glycine transporter 1, is a protein that in humans is encoded by the SLC6A9 gene which is promising therapeutic target for treatment of diabetes and obesity.

<span class="mw-page-title-main">Reuptake inhibitor</span> Type of drug

Reuptake inhibitors (RIs) are a type of reuptake modulators. It is a drug that inhibits the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron. This leads to an increase in extracellular concentrations of the neurotransmitter and an increase in neurotransmission. Various drugs exert their psychological and physiological effects through reuptake inhibition, including many antidepressants and psychostimulants.

Scientific studies have found that different brain areas show altered activity in humans with major depressive disorder (MDD), and this has encouraged advocates of various theories that seek to identify a biochemical origin of the disease, as opposed to theories that emphasize psychological or situational causes. Factors spanning these causative groups include nutritional deficiencies in magnesium, vitamin D, and tryptophan with situational origin but biological impact. Several theories concerning the biologically based cause of depression have been suggested over the years, including theories revolving around monoamine neurotransmitters, neuroplasticity, neurogenesis, inflammation and the circadian rhythm. Physical illnesses, including hypothyroidism and mitochondrial disease, can also trigger depressive symptoms.

GABA transporters (Gamma-Aminobutyric acid transporters) belong to the family of neurotransmitters known as sodium symporters, also known as solute carrier 6 (SLC6). These are large family of neurotransmitter which are Na+ concentration dependent. They are found in various regions of the brain in different cell types, such as neurons and astrocytes.

<span class="mw-page-title-main">GABA reuptake inhibitor</span> Drug class

A GABA reuptake inhibitor (GRI) is a type of drug which acts as a reuptake inhibitor for the neurotransmitter gamma-Aminobutyric acid (GABA) by blocking the action of the gamma-Aminobutyric acid transporters (GATs). This in turn leads to increased extracellular concentrations of GABA and therefore an increase in GABAergic neurotransmission. Gamma-aminobutyric acid (GABA) is an amino acid that functions as the predominant inhibitory neurotransmitter within the central nervous system, playing a crucial role in modulating neuronal activity in both the brain and spinal cord. While GABA predominantly exerts inhibitory actions in the adult brain, it has an excitatory role during developmental stages. When the neuron receives the action potential, GABA is released from the pre-synaptic cell to the synaptic cleft. After the action potential transmission, GABA is detected on the dendritic side, where specific receptors collectively contribute to the inhibitory outcome by facilitating GABA transmitter uptake. Facilitated by specific enzymes, GABA binds to post-synaptic receptors, with GABAergic neurons playing a key role in system regulation. The inhibitory effects of GABA diminish when presynaptic neurons reabsorb it from the synaptic cleft for recycling by GABA transporters (GATs). The reuptake mechanism is crucial for maintaining neurotransmitter levels and synaptic functioning. Gamma-aminobutyric acid Reuptake Inhibitors (GRIs) hinder the functioning of GATs, preventing GABA reabsorption in the pre-synaptic cell. This results in increased GABA levels in the extracellular environment, leading to elevated GABA-mediated synaptic activity in the brain.

Glycine transporters (GlyTs) are plasmalemmal neurotransmitter transporters. They serve to terminate the signaling of glycine by mediating its reuptake from the synaptic cleft back into the presynaptic neurons. There are two glycine transporters: glycine transporter 1 (GlyT1) and glycine transporter 2 (GlyT2).

<span class="mw-page-title-main">ORG-25935</span> Synthetic drug

ORG-25935, also known as SCH-900435 is a synthetic drug developed by Organon International, which acts as a selective inhibitor of the glycine transporter GlyT-1. In animal tests it reduces alcohol consumption and has analgesic and anticonvulsant effects, but it has mainly been studied for its antipsychotic properties, and in human trials it was shown to effectively counteract the effects of the dissociative drug ketamine.

<i>N</i>-Arachidonylglycine Chemical compound

N-Arachidonylglycine (NAGly) is a carboxylic metabolite of the endocannabinoid anandamide (AEA). Since it was first synthesized in 1996, NAGly has been a primary focus of the relatively contemporary field of lipidomics due to its wide range of signaling targets in the brain, the immune system and throughout various other bodily systems. In combination with 2‐arachidonoyl glycerol (2‐AG), NAGly has enabled the identification of a family of lipids often referred to as endocannabinoids. Recently, NAGly has been found to bind to G-protein coupled receptor 18 (GPR18), the putative abnormal cannabidiol receptor. NaGly is an endogenous inhibitor of fatty acid amide hydrolase (FAAH) and thereby increases the ethanolamide endocannabinoids AEA, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels. NaGly is found throughout the body and research on its explicit functions is ongoing.

The endocannabinoid transporters (eCBTs) are transport proteins for the endocannabinoids. Most neurotransmitters are water-soluble and require transmembrane proteins to transport them across the cell membrane. The endocannabinoids on the other hand, are non-charged lipids that readily cross lipid membranes. However, since the endocannabinoids are water immiscible, protein transporters have been described that act as carriers to solubilize and transport the endocannabinoids through the aqueous cytoplasm. These include the heat shock proteins (Hsp70s) and fatty acid-binding proteins for anandamide (FABPs). FABPs such as FABP1, FABP3, FABP5, and FABP7 have been shown to bind endocannabinoids. FABP inhibitors attenuate the breakdown of anandamide by the enzyme fatty acid amide hydrolase (FAAH) in cell culture. One of these inhibitors (SB-FI-26), isolated from a virtual library of a million compounds, belongs to a class of compounds that act as an anti-nociceptive agent with mild anti-inflammatory activity in mice. These truxillic acids and their derivatives have been known to have anti-inflammatory and anti-nociceptive effects in mice and are active components of a Chinese herbal medicine used to treat rheumatism and pain in human. The blockade of anandamide transport may, at least in part, be the mechanism through which these compounds exert their anti-nociceptive effects.

A glycine reuptake inhibitor (GRI) is a type of drug which inhibits the reuptake of the neurotransmitter glycine by blocking one or more of the glycine transporters (GlyTs). Examples of GRIs include bitopertin (RG1678), Org 24598, Org 25935, ALX-5407, and sarcosine, which are selective GlyT1 blockers, and Org 25543 and N-arachidonylglycine, which are selective GlyT2 blockers. Some weak and/or non-selective GlyT blockers include amoxapine and ethanol (alcohol).

<span class="mw-page-title-main">4-Chlorokynurenine</span> Investigational antidepressant compound

L-4-Chlorokynurenine is an orally active small molecule prodrug of 7-chlorokynurenic acid, a NMDA receptor antagonist. It was investigated as a potential rapid-acting antidepressant.

References

  1. "(2S)-2-amino-3-{[2-(benzyloxy)phenyl](3-fluorophenyl)methoxy}propanoic acid".
  2. Eckle, V.-S.; Antkowiak, B. (2013-12-03). "ALX 1393 inhibits spontaneous network activity by inducing glycinergic tonic currents in the spinal ventral horn". Neuroscience. 253: 165–171. doi:10.1016/j.neuroscience.2013.08.042. ISSN   1873-7544. PMID   23994185. S2CID   30039776.
  3. Benito-Muñoz, Cristina; Perona, Almudena; Felipe, Raquel; Pérez-Siles, Gonzalo; Núñez, Enrique; Aragón, Carmen; López-Corcuera, Beatriz (2021-06-02). "Structural Determinants of the Neuronal Glycine Transporter 2 for the Selective Inhibitors ALX1393 and ORG25543". ACS Chemical Neuroscience. 12 (11): 1860–1872. doi:10.1021/acschemneuro.0c00602. ISSN   1948-7193. PMC   8691691 . PMID   34003005.
  4. Motoyama, Naoyo; Morita, Katsuya; Shiraishi, Seiji; Kitayama, Tomoya; Kanematsu, Takashi; Uezono, Yasuhito; Dohi, Toshihiro (October 2014). "Relief of cancer pain by glycine transporter inhibitors". Anesthesia and Analgesia. 119 (4): 988–995. doi:10.1213/ANE.0000000000000388. ISSN   1526-7598. PMID   25076101.