Taurine

Last updated

Contents

Taurine
Taurin.svg
Taurine-from-xtal-Mercury-3D-balls.png
Names
Preferred IUPAC name
2-Aminoethanesulfonic acid
Other names
Tauric acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.168 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C2H7NO3S/c3-1-2-7(4,5)6/h1-3H2,(H,4,5,6) Yes check.svgY
    Key: XOAAWQZATWQOTB-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C2H7NO3S/c3-1-2-7(4,5)6/h1-3H2,(H,4,5,6)
    Key: XOAAWQZATWQOTB-UHFFFAOYAA
  • O=S(=O)(O)CCN
Properties
C2H7NO3S
Molar mass 125.14 g/mol
Appearancecolorless or white solid
Density 1.734 g/cm3 (at −173.15 °C)
Melting point 305.11 °C (581.20 °F; 578.26 K) Decomposes into simple molecules
Acidity (pKa)<0, 9.06
Related compounds
Related compounds
Sulfamic acid
Aminomethanesulfonic acid
Homotaurine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Taurine ( /ˈtɔːrn/ ), or 2-aminoethanesulfonic acid, is a non-proteinogenic naturally occurred amino sulfonic acid that is widely distributed in animal tissues. [1] It is a major constituent of bile and can be found in the large intestine, and accounts for up to 0.1% of total human body weight.

Taurine is named after Latin taurus (cognate to Ancient Greek ταῦρος, taûros) meaning bull or ox, as it was first isolated from ox bile in 1827 by German scientists Friedrich Tiedemann and Leopold Gmelin. [2] It was discovered in human bile in 1846 by Edmund Ronalds. [3]

Although taurine is abundant in human organs with diverse putative roles, it is not an essential human dietary nutrient and is not included among nutrients with a recommended intake level. [4] Taurine is synthesized naturally in human liver from methionine and cysteine. [5]

Taurine is commonly sold as a dietary supplement, but there is no good clinical evidence that taurine supplements provide any benefit to human health. [6] Taurine is used as a food additive for cats (who require it as an essential nutrient), dogs, and poultry. [7]

Taurine concentrations in land plants are low or undetectable, but up to 1000 nmol/g wet weight have been found in algae. [8] [9]

Chemical and biochemical features

Taurine exists as a zwitterion H3N+CH2CH2SO3, as verified by X-ray crystallography. [10] The sulfonic acid has a low pKa [11] ensuring that it is fully ionized to the sulfonate at the pHs found in the intestinal tract.

Synthesis

Synthetic taurine is obtained by the ammonolysis of isethionic acid (2-hydroxyethanesulfonic acid), which in turn is obtained from the reaction of ethylene oxide with aqueous sodium bisulfite. A direct approach involves the reaction of aziridine with sulfurous acid. [12]

In 1993, about 5000–6000 tonnes of taurine were produced for commercial purposes: 50% for pet food and 50% in pharmaceutical applications. [13] As of 2010, China alone has more than 40 manufacturers of taurine. Most of these enterprises employ the ethanolamine method to produce a total annual production of about 3000 tonnes. [14]

In the laboratory, taurine can be produced by alkylation of ammonia with bromoethanesulfonate salts. [15]

Biosynthesis

Taurine is naturally derived from cysteine. Mammalian taurine synthesis occurs in the pancreas via the cysteine sulfinic acid pathway. In this pathway, cysteine is first oxidized to its sulfinic acid, catalyzed by the enzyme cysteine dioxygenase. Cysteine sulfinic acid, in turn, is decarboxylated by sulfinoalanine decarboxylase to form hypotaurine. Hypotaurine is enzymatically oxidized to yield taurine by hypotaurine dehydrogenase. [16]

Taurine is also produced by the transsulfuration pathway, which converts homocysteine into cystathionine. The cystathionine is then converted to hypotaurine by the sequential action of three enzymes: cystathionine gamma-lyase, cysteine dioxygenase, and cysteine sulfinic acid decarboxylase. Hypotaurine is then oxidized to taurine as described above. [17]

A pathway for taurine biosynthesis from serine and sulfate is reported in microalgae, [9] developing chicken embryos, [18] and chick liver. [19] Serine dehydratase converts serine to 2-aminoacrylate, which is converted to cysteic acid by 3′-phosphoadenylyl sulfate:2-aminoacrylate C-sulfotransferase. Cysteic acid is converted to taurine by cysteine sulfinic acid decarboxylase.

Oxidative degradation of cysteine to taurine Degradation of Cysteine to Taurine.svg
Oxidative degradation of cysteine to taurine

In food

Taurine occurs naturally in fish and meat. [6] [20] [21] The mean daily intake from omnivore diets was determined to be around 58 mg (range 9–372 mg), [22] and to be low or negligible from a vegan diet. [6] Typical taurine consumption in the American diet is about 123–178 mg per day. [6]

Taurine is partially destroyed by heat in processes such as baking and boiling. This is a concern for cat food, as cats have a dietary requirement for taurine and can easily become deficient. Either raw feeding or addition of extra taurine can satisfy this requirement. [23] [24]

Lysine and taurine can both mask the metallic flavor of potassium chloride, a salt substitute. [25]

Breast milk

Prematurely born infants are believed to lack the enzymes needed to convert cystathionine to cysteine, and may, therefore, become deficient in taurine. Taurine is present in breast milk, and has been added to many infant formulas, as a measure of prudence, since the early 1980s. However, this practice has never been rigorously studied, and as such it has yet to be proven to be necessary, or even beneficial. [26]

Energy drinks and dietary supplements

Taurine is an ingredient in some energy drinks in amounts of 1–3 g per serving. [6] [27] [28] [29] A 1999 assessment of European consumption of energy drinks found that taurine intake was 40–400 mg per day. [22] [ clarification needed ]

Research

Taurine is not regarded as an essential human dietary nutrient and has not been assigned recommended intake levels. [4] High-quality clinical studies to determine possible effects of taurine in the body or following dietary supplementation are absent from the literature. [6] Preliminary human studies on the possible effects of taurine supplementation have been inadequate due to low subject numbers, inconsistent designs, and variable doses. [6]

Safety and toxicity

According to the European Food Safety Authority (EFSA), taurine is "considered to be a skin and eye irritant and skin sensitiser, and to be hazardous if inhaled;" it may be safe to consume up to 6 grams of taurine per day. [7] Other sources indicate that taurine is safe for supplemental intake in normal healthy adults at up to 3 grams per day. [6] [30]

A 2008 review found no documented reports of negative or positive health effects associated with the amount of taurine used in energy drinks, concluding, "The amounts of guarana, taurine, and ginseng found in popular energy drinks are far below the amounts expected to deliver either therapeutic benefits or adverse events". [31]

Animal dietary requirement

Cats

Cats lack the enzymatic machinery (sulfinoalanine decarboxylase) to produce taurine and must therefore acquire it from their diet. [32] A taurine deficiency in cats can lead to retinal degeneration and eventually blindness – a condition known as central retinal degeneration [33] [34] as well as hair loss and tooth decay. Other effects of a diet lacking in this essential amino acid are dilated cardiomyopathy and reproductive failure in female cats. [35]

Decreased plasma taurine concentration has been demonstrated to be associated with feline dilated cardiomyopathy. Unlike CRD, the condition is reversible with supplementation. [36]

Taurine is now a requirement of the Association of American Feed Control Officials (AAFCO) and any dry or wet food product labeled approved by the AAFCO should have a minimum of 0.1% taurine in dry food and 0.2% in wet food. [37] Studies suggest the amino acid should be supplied at 10 mg per kilogram of bodyweight per day for domestic cats. [38]

Other mammals

A number of other mammals also have a requirement for taurine. While the majority of dogs can synthesize taurine, case reports have described a singular American cocker spaniel, 19 Newfoundland dogs, and a family of golden retrievers suffering from taurine deficiency treatable with supplementation. Foxes on fur farms also appear to require dietary taurine. The rhesus, cebus and cynomolgus monkeys each require taurine at least in infancy. The giant anteater also requires taurine. [39]

Birds

Taurine appears to be essential for the development of passerine birds. Many passerines seek out taurine-rich spiders to feed their young, particularly just after hatching. Researchers compared the behaviours and development of birds fed a taurine-supplemented diet to a control diet and found the juveniles fed taurine-rich diets as neonates were much larger risk takers and more adept at spatial learning tasks. Under natural conditions, each blue tit nestling receive 1 mg of taurine per day from parents. [40]

Taurine can be synthesized by chickens. Supplementation has no effect on chickens raised under adequate lab conditions, but seems to help with growth under stresses such as heat and dense housing. [41]

Fish

Species of fish, mostly carnivorous ones, show reduced growth and survival when the fish-based feed in their food is replaced with soy meal or feather meal. Taurine has been identified as the factor responsible for this phenomenon; supplementation of taurine to plant-based fish feed reverses these effects. Future aquaculture is expected to use more of these more environmentally-friendly protein sources, so supplementation would become more important. [42]

The need of taurine in fish is conditional, differing by species and growth stage. The Olive flounder, for example, has lower capacity to synthesize taurine compared to the rainbow trout. Juvenile fish are less efficient at taurine biosyntheis due to reduced cysteine sulfinate decarboxylase levels. [43]

Derivatives

See also

Related Research Articles

<span class="mw-page-title-main">Cysteine</span> Proteinogenic amino acid

Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, but both D and L-cysteine are found in nature. L‑Cysteine is a protein monomer in all biota, and D-cysteine acts as a signaling molecule in mammalian nervous systems. Cysteine is named after its discovery in urine, which comes from the urinary bladder or cyst, from Greek κύστη kýsti, "bladder".

<span class="mw-page-title-main">Pantothenic acid</span> Chemical compound

Pantothenic acid (vitamin B5) is a B vitamin and an essential nutrient. All animals need pantothenic acid in order to synthesize coenzyme A (CoA), which is essential for cellular energy production and for the synthesis and degradation of proteins, carbohydrates, and fats.

Vitamin B<sub>6</sub> Class of chemically related vitamins

Vitamin B6 is one of the B vitamins, and thus an essential nutrient. The term refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.

<span class="mw-page-title-main">Methionine</span> Sulfur-containing amino acid

Methionine is an essential amino acid in humans.

<span class="mw-page-title-main">Kitten</span> Juvenile cat

A kitten is a juvenile cat. After being born, kittens display primary altriciality and are fully dependent on their mothers for survival. They normally do not open their eyes for seven to ten days. After about two weeks, kittens develop quickly and begin to explore the world outside their nest. After a further three to four weeks, they begin to eat solid food and grow baby teeth. Domestic kittens are highly social animals and usually enjoy human companionship.

A nutrient is a substance used by an organism to survive, grow and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi and protists. Nutrients can be incorporated into cells for metabolic purposes or excreted by cells to create non-cellular structures such as hair, scales, feathers, or exoskeletons. Some nutrients can be metabolically converted into smaller molecules in the process of releasing energy such as for carbohydrates, lipids, proteins and fermentation products leading to end-products of water and carbon dioxide. All organisms require water. Essential nutrients for animals are the energy sources, some of the amino acids that are combined to create proteins, a subset of fatty acids, vitamins and certain minerals. Plants require more diverse minerals absorbed through roots, plus carbon dioxide and oxygen absorbed through leaves. Fungi live on dead or living organic matter and meet nutrient needs from their host.

An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism fast enough to supply its demand, and must therefore come from the diet. Of the 21 amino acids common to all life forms, the nine amino acids humans cannot synthesize are valine, isoleucine, leucine, methionine, phenylalanine, tryptophan, threonine, histidine, and lysine.

<span class="mw-page-title-main">Dietary supplement</span> Product providing additional nutrients

A dietary supplement is a manufactured product intended to supplement a person's diet by taking a pill, capsule, tablet, powder, or liquid. A supplement can provide nutrients either extracted from food sources, or that are synthetic. The classes of nutrient compounds in supplements include vitamins, minerals, fiber, fatty acids, and amino acids. Dietary supplements can also contain substances that have not been confirmed as being essential to life, and so are not nutrients per se, but are marketed as having a beneficial biological effect, such as plant pigments or polyphenols. Animals can also be a source of supplement ingredients, such as collagen from chickens or fish for example. These are also sold individually and in combination, and may be combined with nutrient ingredients. The European Commission has also established harmonized rules to help insure that food supplements are safe and appropriately labeled.

<span class="mw-page-title-main">Dog food</span> Food intended for consumption by dogs usually made from meat

Dog food is specifically formulated and intended for consumption by dogs and other related canines. Dogs are considered to be omnivores with a carnivorous bias. They have the sharp, pointed teeth and shorter gastrointestinal tracts of carnivores, better suited for the consumption of meat than of vegetable substances, yet also have ten genes that are responsible for starch and glucose digestion, as well as the ability to produce amylase, an enzyme that functions to break down carbohydrates into simple sugars – something that obligate carnivores like cats lack. Dogs evolved the ability living alongside humans in agricultural societies, as they managed on scrap leftovers and excrement from humans.

<span class="mw-page-title-main">Cat food</span> Food for consumption by cats

Cat food is food specifically formulated and designed for consumption by cats. As obligate carnivores, cats have specific requirements for their dietary nutrients, namely nutrients found only in meat or synthesized, such as taurine and Vitamin A. Certain nutrients, including many vitamins and amino acids, are degraded by the temperatures, pressures and chemical treatments used during manufacture, and hence must be added after manufacture to avoid nutritional deficiency. Cat food is typically sold as dry kibble, or as wet food in cans and pouches.

<span class="mw-page-title-main">Cysteine dioxygenase</span> Enzyme

Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the conversion of L-cysteine to cysteine sulfinic acid. CDO plays an important role in cysteine catabolism, regulating intracellular levels of cysteine and responding changes in cysteine availability. As such, CDO is highly regulated and undergoes large changes in concentration and efficiency. It oxidizes cysteine to the corresponding sulfinic acid by activation of dioxygen, although the exact mechanism of the reaction is still unclear. In addition to being found in mammals, CDO also exists in some yeast and bacteria, although the exact function is still unknown. CDO has been implicated in various neurodegenerative diseases and cancers, which is likely related to cysteine toxicity.

<span class="mw-page-title-main">Pet food</span> Animal feed for pets

Pet food is animal feed intended for consumption by pets. Typically sold in pet stores and supermarkets, it is usually specific to the type of animal, such as dog food or cat food. Most meat used for animals is a byproduct of the human food industry, and is not regarded as "human grade".

<span class="mw-page-title-main">Protein (nutrient)</span> Nutrient for the human body

Proteins are essential nutrients for the human body. They are one of the building blocks of body tissue and can also serve as a fuel source. As a fuel, proteins provide as much energy density as carbohydrates: 4 kcal per gram; in contrast, lipids provide 9 kcal per gram. The most important aspect and defining characteristic of protein from a nutritional standpoint is its amino acid composition.

<span class="mw-page-title-main">Cystathionine</span> Chemical compound

Cystathionine is an intermediate in the synthesis of cysteine from homocysteine. It is produced by the transsulfuration pathway and is converted into cysteine by cystathionine gamma-lyase (CTH).

<span class="mw-page-title-main">Cysteine sulfinic acid</span> Chemical compound

Cysteine sulfinic acid is the organic compound with the nominal formula HO2SCH2CH(NH2)CO2H. It is a rare example of an amino acid bearing a sulfinic acid functional group. It is a white solid that is soluble in water. Like most natural amino acids, it is chiral, only the L-enantiomer occurs in nature, and it exists as the zwitterion at neutral pH. It is an intermediate in cysteine metabolism. It is not a coded amino acid, but is produced post-translationally. Peptides containing the cysteine sulfinic acid residue are substrates for cysteine sulfinic acid reductase.

<span class="mw-page-title-main">Low-sulfur diet</span>

A low-sulfur diet is a diet with reduced sulfur content. Important dietary sources of sulfur and sulfur containing compounds may be classified as essential mineral, essential amino acid (methionine) and semi-essential amino acid.

<span class="mw-page-title-main">Magnesium taurate</span> Chemical compound

Magnesium taurate, also known as magnesium ditaurate or magnesium taurinate, is the magnesium salt of taurine, and a mineral supplement.

In general, cognitive support diets are formulated to include nutrients that have a known role in brain development, function and/or maintenance, with the goal of improving and preserving mental processes such as attentiveness, short-term and long-term memory, learning, and problem solving. Currently, there is very little conclusive research available regarding cat cognition as standardized tests for evaluating cognitive ability are less established and less reliable than cognitive testing apparatus used in other mammalian species, like dogs. Much of what is known about feline cognition has been inferred from a combination of owner-reported behaviour, brain necropsies, and comparative cognitive neurology of related animal models. Cognition claims appear primarily on kitten diets which include elevated levels of nutrients associated with optimal brain development, although there are now diets available for senior cats that include nutrients to help slow the progression of age-related changes and prevent cognitive decline. Cognition diets for cats contain a greater portion of omega-3 fatty acids, especially docosahexaenoic acid (DHA) as well as eicosapentaenoic acid (EPA), and usually feature a variety of antioxidants and other supporting nutrients thought to have positive effects on cognition.

<span class="mw-page-title-main">Vegetarian and vegan dog diet</span> Adequate meat-free or animal-free nutrition

As in the human practice of veganism, vegan dog foods are those formulated with the exclusion of ingredients that contain or were processed with any part of an animal, or any animal byproduct. Vegan dog food may incorporate the use of fruits, vegetables, cereals, legumes including soya, nuts, vegetable oils, as well as any other non-animal based foods.

<span class="mw-page-title-main">GADL1</span> Enzyme

Glutamate decarboxylase like 1 (GADL1) is the enzyme responsible for decarboxylating aspartate (Asp) to β-alanine and cysteine sulfinic acid (CSA) to hypotaurine. GADL1 is a Pyridoxal 5’-phosphate (PLP)-dependent enzyme. By decarboxylating Asp to β-alanine, GADL1 consequently plays a role in the production of carnosine. Carnosine and taurine have multiple biological functions such as calcium regulation, pH buffering, metal chelation, and antioxidant effects. β-Alanine also plays a role as neurotransmitter or neuromodulator in the central nervous system (CNS) and olfactory bulbs.

References

  1. Schuller-Levis GB, Park E (September 2003). "Taurine: new implications for an old amino acid". FEMS Microbiology Letters. 226 (2): 195–202. doi: 10.1016/S0378-1097(03)00611-6 . PMID   14553911.
  2. Tiedemann F, Gmelin L (1827). "Einige neue Bestandtheile der Galle des Ochsen". Annalen der Physik. 85 (2): 326–337. Bibcode:1827AnP....85..326T. doi:10.1002/andp.18270850214.
  3. Ronalds BF (2019). "Bringing Together Academic and Industrial Chemistry: Edmund Ronald' Contribution". Substantia. 3 (1): 139–152.
  4. 1 2 "Daily Value on the New Nutrition and Supplement Facts Labels". US Food and Drug Administration. 25 February 2022. Retrieved 26 August 2023.
  5. "Taurine". PubChem, US National Library of Medicine. 25 May 2024. Retrieved 31 May 2024.
  6. 1 2 3 4 5 6 7 8 "Taurine". Drugs.com. 15 May 2023. Retrieved 26 August 2023.
  7. 1 2 EFSA Panel on Additives and Products or Substances used in Animal Feed (2012). "Scientific Opinion on the safety and efficacy of taurine as a feed additive for all animal species". EFSA Journal. 10 (6): 2736. doi: 10.2903/j.efsa.2012.2736 .
  8. Kataoka H, Ohnishi N (1986). "Occurrence of Taurine in Plants". Agricultural and Biological Chemistry. 50 (7): 1887–1888. doi: 10.1271/bbb1961.50.1887 .
  9. 1 2 McCusker S, Buff PR, Yu Z, Fascetti AJ (2014). "Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods". Journal of Nutritional Science. 3: e39. doi:10.1017/jns.2014.33. ISSN   2048-6790. PMC   4473169 . PMID   26101608.
  10. Görbitz CH, Prydz K, Ugland S (2000). "Taurine". Acta Crystallographica Section C. 56 (1): e23–e24. Bibcode:2000AcCrC..56E..23G. doi:10.1107/S0108270199016029.
  11. Irving CS, Hammer BE, Danyluk SS, Klein PD (October 1980). "13C nuclear magnetic resonance study of the complexation of calcium by taurine". Journal of Inorganic Biochemistry. 13 (2): 137–150. doi:10.1016/S0162-0134(00)80117-8. PMID   7431022.
  12. Kosswig K (2000). "Sulfonic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a25_503. ISBN   978-3-527-30673-2.
  13. Tully PS, ed. (2000). "Sulfonic Acids". Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. doi:10.1002/0471238961.1921120620211212.a01. ISBN   978-0-471-23896-6.
  14. Amanda Xia (2010-01-03). "China Taurine Market Is Expected To Recover". Press release and article directory: technology. Archived from the original on 2018-09-20. Retrieved 2010-05-24.
  15. Marvel CS, Bailey CF, Cortese F (1938). "Taurine". Organic Syntheses. 18: 77. doi:10.15227/orgsyn.018.0077.
  16. Sumizu K (September 1962). "Oxidation of hypotaurine in rat liver". Biochimica et Biophysica Acta. 63: 210–212. doi:10.1016/0006-3002(62)90357-8. PMID   13979247.
  17. Ripps H, Shen W (2012). "Review: taurine: a "very essential" amino acid". Molecular Vision. 18: 2673–2686. PMC   3501277 . PMID   23170060.
  18. Machlin LJ, Pearson PB, Denton CA (1955). "The Utilization of Sulfate Sulfur for the Synthesis of Taurine in the Developing Chick Embryo". Journal of Biological Chemistry. 212 (1): 469–475. doi: 10.1016/s0021-9258(18)71134-4 . ISSN   0021-9258. PMID   13233249.
  19. Sass NL, Martin WG (1972-03-01). "The Synthesis of Taurine from Sulfate III. Further Evidence for the Enzymatic Pathway in Chick Liver". Experimental Biology and Medicine. 139 (3): 755–761. doi:10.3181/00379727-139-36232. ISSN   1535-3702. PMID   5023763. S2CID   77903.
  20. Brosnan JT, Brosnan ME (June 2006). "The sulfur-containing amino acids: an overview". The Journal of Nutrition. 136 (6 Suppl): 1636S–1640S. doi: 10.1093/jn/136.6.1636S . PMID   16702333.
  21. Huxtable RJ (January 1992). "Physiological actions of taurine". Physiological Reviews. 72 (1): 101–163. doi:10.1152/physrev.1992.72.1.101. PMID   1731369. S2CID   27844955.
  22. 1 2 "Opinion on Caffeine, Taurine and D-Glucurono – g -Lactone as constituents of so-called 'energy' drinks". Directorate-General Health and Consumers, European Commission, European Union. 1999-01-21. Archived from the original on 2006-06-23.
  23. Jacobson SG, Kemp CM, Borruat FX, Chaitin MH, Faulkner DJ (October 1987). "Rhodopsin topography and rod-mediated function in cats with the retinal degeneration of taurine deficiency". Experimental Eye Research. 45 (4): 481–490. doi:10.1016/S0014-4835(87)80059-3. PMID   3428381.
  24. Spitze AR, Wong DL, Rogers QR, Fascetti AJ (2003). "Taurine concentrations in animal feed ingredients; cooking influences taurine content" (PDF). J. Anim. Physiol. A. Anim. Nutr. 87 (7–8): 251–262. doi:10.1046/j.1439-0396.2003.00434.x. PMID   12864905 . Retrieved January 27, 2024.
  25. dos Santos BA, Campagnol PC, Morgano MA, Pollonio MA (January 2014). "Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl". Meat Science. 96 (1): 509–513. doi:10.1016/j.meatsci.2013.08.024. PMID   24008059.
  26. Heird WC (November 2004). "Taurine in neonatal nutrition – revisited". Archives of Disease in Childhood. Fetal and Neonatal Edition. 89 (6): F473–474. doi:10.1136/adc.2004.055095. PMC   1721777 . PMID   15499132.
  27. "Original Rockstar Ingredients". rockstar69.com. Archived from the original on 2007-11-03. Retrieved 2023-06-23.
  28. Chang PL (2008-05-03). "Nos Energy Drink – Review". energyfanatics.com. Archived from the original on 2008-06-17. Retrieved 2010-05-21.
  29. Kurtz JA, VanDusseldorp TA, Doyle JA, Otis, JS (2021). "Taurine in sports and exercise". Journal of the International Society of Sports Nutrition. 18 (39): 39. doi: 10.1186/s12970-021-00438-0 . PMC   8152067 . PMID   34039357.
  30. Shao A, Hathcock JN (April 2008). "Risk assessment for the amino acids taurine, L-glutamine and L-arginine". Regulatory Toxicology and Pharmacology. 50 (3): 376–399. doi:10.1016/j.yrtph.2008.01.004. PMID   18325648. the newer method described as the Observed Safe Level (OSL) or Highest Observed Intake (HOI) was utilized. The OSL risk assessments indicate that based on the available published human clinical trial data, the evidence for the absence of adverse effects is strong for Tau at supplemental intakes up to 3 g/d, Gln at intakes up to 14 g/d and Arg at intakes up to 20 g/d, and these levels are identified as the respective OSLs for normal healthy adults.
  31. Clauson KA, Shields KM, McQueen CE, Persad N (2008). "Safety issues associated with commercially available energy drinks". Journal of the American Pharmacists Association. 48 (3): e55–63, quiz e64–67. doi:10.1331/JAPhA.2008.07055. PMID   18595815. S2CID   207262028.
  32. Knopf K, Sturman JA, Armstrong M, Hayes KC (May 1978). "Taurine: an essential nutrient for the cat". The Journal of Nutrition. 108 (5): 773–778. doi:10.1093/jn/108.5.773. PMID   641594.
  33. Hayes KC, Carey RE, Schmidt SY (1975). "Retinal Degeneration Associated with Taurine Deficiency in the Cat". Science. 188 (4191): 949–951. Bibcode:1975Sci...188..949H. doi:10.1126/science.1138364. PMID   1138364.
  34. Nutrient Requirements of Cats, Revised Edition. Board On Agriculture. 1986. ISBN   978-0-309-07483-4.
  35. Hayes KC, Carey RE, Schmidt SY (May 1975). "Retinal degeneration associated with taurine deficiency in the cat". Science. 188 (4191): 949–951. Bibcode:1975Sci...188..949H. doi:10.1126/science.1138364. PMID   1138364.
  36. Pion PD, Kittleson MD, Rogers QR, Morris JG (August 1987). "Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy". Science. 237 (4816): 764–768. Bibcode:1987Sci...237..764P. doi:10.1126/science.3616607. PMID   3616607.
  37. "AAFCO Cat Food Nutrient Profiles". Archived from the original on 2015-05-29. Retrieved 30 May 2015.
  38. Burger IH, Barnett KC (1982). "The taurine requirement of the adult cat". Journal of Small Animal Practice. 23 (9): 533–537. doi:10.1111/j.1748-5827.1982.tb02514.x.
  39. Schaffer SW, Ito T, Azuma J (January 2014). "Clinical significance of taurine". Amino Acids. 46 (1): 1–5. doi:10.1007/s00726-013-1632-8. PMID   24337931. (abstracts of animal citations used to provide list of species)
  40. Arnold KE, Ramsay SL, Donaldson C, Adam A (October 2007). "Parental prey selection affects risk-taking behaviour and spatial learning in avian offspring". Proceedings of the Royal Society B: Biological Sciences. 274 (1625): 2563–2569. doi:10.1098/rspb.2007.0687. PMC   2275882 . PMID   17698490.
  41. Surai P, Kochish I, Kidd M (February 2020). "Taurine in poultry nutrition". Animal Feed Science and Technology. 260: 114339. doi:10.1016/j.anifeedsci.2019.114339. S2CID   209599794.
  42. Salze GP, Davis DA (February 2015). "Taurine: a critical nutrient for future fish feeds". Aquaculture. 437: 215–229. Bibcode:2015Aquac.437..215S. doi: 10.1016/j.aquaculture.2014.12.006 .
  43. Sampath WW, Rathnayake RM, Yang M, Zhang W, Mai K (November 2020). "Roles of dietary taurine in fish nutrition". Marine Life Science & Technology. 2 (4): 360–375. Bibcode:2020MLST....2..360S. doi:10.1007/s42995-020-00051-1.
  44. Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (December 2002). "Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases". The EMBO Journal. 21 (23): 6581–6589. doi:10.1093/emboj/cdf656. PMC   136959 . PMID   12456664.
  45. Bünzli-Trepp U (2007). Systematic nomenclature of organic, organometallic and coordination chemistry. EPFL Press. p. 226. ISBN   978-1-4200-4615-1.