Sulfinic acid

Last updated
The general structure of a sulfinic acid Sulfinic-acid-2D.png
The general structure of a sulfinic acid

Sulfinic acids are oxoacids of sulfur with the structure RSO(OH). In these organosulfur compounds, sulfur is pyramidal. [1]

Contents

Structure and properties

Sulfinic acids RSO2H are about 1000-fold more acidic than the corresponding carboxylic acid RCO2H.[ citation needed ] Sulfur is pyramidal, consequently sulfinic acids are chiral. The free acids are typically unstable, disproportionating to the sulfonic acid RSO3H and thiosulfonate RSSO3R. [2] :679 The formal anhydride of a sulfinic acid has not joining oxygen atom, but is instead a sulfinyl sulfone (RS+(O)S2+(O)2R), [3] and disproportionation is believed to occur through the free-radical fission of this intermediate. [4]

Alkylation of sulfinic acids can give either sulfones or sulfinate esters, depending on the solvent and reagent. Strongly polarized reactants (e.g. trimethyloxonium tetrafluoroborate) give esters, whereas relatively unpolarized reactants (e.g. an alkyl halide or enone) give sulfones. [2] :682 Sulfinates react with Grignard reagents to give sulfoxides, and undergo a variant of the Claisen condensation towards the same end. [2] :686

Cobalt(III) salts can oxidize sulfinic acids to disulfones, although yields are only 3050%. [5]

Preparation

Sulfinic acids are often prepared in situ by acidification of the corresponding sulfinate salts, which are typically more robust than the acid. These salts are generated by reduction of sulfonyl chlorides with metals, [6] although thiolates also reduce sulfonate thioesters to a sulfinate and a disulfide. [2] :681

An alternative route is the reaction of Grignard reagents with sulfur dioxide. Transition metal sulfinates are also generated by insertion of sulfur dioxide into metal alkyls, a reaction that may proceed via a metal sulfur dioxide complex.

Sulfones may eliminate in base, particularly if a strong nucleophile is present; thus for example sodium cyanide causes bis(2butanone-4yl) sulfone to split into levulinonitrile and 3oxobutane 1sulfinic acid: [2] :681

SO2((CH2)2Ac)2 + NaCN → NaSO2(CH2)2Ac + NC(CH2)2Ac

The nitrile presumably forms through conjugate addition of cyanide to the corresponding enone.

Friedel-Crafts addition of thionyl chloride to an alkene gives an αchloro sulfinyl chloride, typically complexed to a Lewis acid. Likewise a carbanion can attack thionyl chloride to give a sulfinyl chloride. Careful hydrolysis then gives a sulfinic acid. [2] :682,684 Sulfinyl chlorides attack sulfinates to give sulfinyl sulfones (sulfinic anhydrides). [3]

Unsubstituted sulfinic acid, when R is the hydrogen atom, is a higher energy isomer of sulfoxylic acid, both of which are unstable.

Examples

An example of a simple, well-studied sulfinic acid is phenylsulfinic acid. A commercially important sulfinic acid is thiourea dioxide, which is prepared by the oxidation of thiourea with hydrogen peroxide. [2]

(NH2)2CS + 2H2O2 → (NH)(NH2)CSO2H + 2H2O

Another commercially important sulfinic acid is hydroxymethyl sulfinic acid, which is usually employed as its sodium salt (HOCH2SO2Na). Called Rongalite, this anion is also commercially useful as a reducing agent.

Sulfinates

The conjugate base of a sulfinic acid is a sulfinate anion. The enzyme cysteine dioxygenase converts cysteine into the corresponding sulfinate. One product of this catabolic reaction is the sulfinic acid hypotaurine. Sulfinite also describes esters of sulfinic acid. Cyclic sulfinite esters are called sultines.

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Thioester</span> Organosulfur compounds of the form R–SC(=O)–R’

In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R’. They are analogous to carboxylate esters with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix. They are the product of esterification of a carboxylic acid with a thiol. In biochemistry, the best-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA. The R and R' represent organyl groups, or H in the case of R.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Oxalyl chloride</span> Chemical compound

Oxalyl chloride is an organic chemical compound with the formula Cl−C(=O)−C(=O)−Cl. This colorless, sharp-smelling liquid, the diacyl chloride of oxalic acid, is a useful reagent in organic synthesis.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Nitrosation and nitrosylation</span> Process of converting organic compounds into nitroso derivatives

Nitrosation and nitrosylation are two names for the process of converting organic compounds or metal complexes into nitroso derivatives, i.e., compounds containing the R−NO functionality. The synonymy arises because the R-NO functionality can be interpreted two different ways, depending on the physico-chemical environment:

<span class="mw-page-title-main">Sulfone</span> Organosulfur compound of the form >S(=O)2

In organic chemistry, a sulfone is a organosulfur compound containing a sulfonyl functional group attached to two carbon atoms. The central hexavalent sulfur atom is double-bonded to each of two oxygen atoms and has a single bond to each of two carbon atoms, usually in two separate hydrocarbon substituents.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

<span class="mw-page-title-main">Carbonyldiimidazole</span> Chemical compound

1,1'-Carbonyldiimidazole (CDI) is an organic compound with the molecular formula (C3H3N2)2CO. It is a white crystalline solid. It is often used for the coupling of amino acids for peptide synthesis and as a reagent in organic synthesis.

<span class="mw-page-title-main">Rongalite</span> Chemical compound

Rongalite is a chemical compound with the molecular formula Na+HOCH2SO2. This salt has many additional names, including Rongalit, sodium hydroxymethylsulfinate, sodium formaldehyde sulfoxylate, and Bruggolite. It is listed in the European Cosmetics Directive as sodium oxymethylene sulfoxylate (INCI). It is water-soluble and generally sold as the dihydrate. The compound and its derivatives are widely used in the dye industry. The structure of this salt has been confirmed by X-ray crystallography.

In chemistry, a sulfonyl halide consists of a sulfonyl group singly bonded to a halogen atom. They have the general formula RSO2X, where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

<span class="mw-page-title-main">Thiosulfinate</span> Functional group

In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R. Thiolsulfinates are also named as alkanethiosulfinic acid esters.

In organosulfur chemistry, sulfinamide is a functional group with the structure R−S(O)−NR2. This functionality is composed of a sulfur-carbon single bond, a sulfur-nitrogen single bond, and a sulfur-oxygen (S-O) bond. As a non-bonding electron pair is present on the sulfur, the sulfur atom is a stable stereogenic centre, and so these compounds are chiral. They are sometimes referred to as S-chiral sulfinamides. Sulfinamides are amides of sulfinic acid.

Desulfonylation reactions are chemical reactions leading to the removal of a sulfonyl group from organic compounds. As the sulfonyl functional group is electron-withdrawing, methods for cleaving the sulfur–carbon bonds of sulfones are typically reductive in nature. Olefination or replacement with hydrogen may be accomplished using reductive desulfonylation methods.

<span class="mw-page-title-main">Phenylsulfinic acid</span> Chemical compound

Phenylsulfinic acid is an organosulfur compound with the formula C6H5SO2H. It is a colorless or white crystalline solid that is usually stored in the form of its sodium salt. In aqueous solution it is strongly acidic and is easily oxidized in air. Phenylsulfinic acid and its esters are chiral.

<span class="mw-page-title-main">Sulfinyl halide</span> Class of chemical compounds

Sulfinyl halide have the general formula R−S(O)−X, where X is a halogen. They are intermediate in oxidation level between sulfenyl halides, R−S−X, and sulfonyl halides, R−SO2−X. The best known examples are sulfinyl chlorides, thermolabile, moisture-sensitive compounds, which are useful intermediates for preparation of other sufinyl derivatives such as sulfinamides, sulfinates, sulfoxides, and thiosulfinates. Unlike the sulfur atom in sulfonyl halides and sulfenyl halides, the sulfur atom in sulfinyl halides is chiral, as shown for methanesulfinyl chloride.

<span class="mw-page-title-main">Sulfoxylic acid</span> Chemical compound

Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.

α,β-Unsaturated carbonyl compound Functional group of organic compounds

α,β-Unsaturated carbonyl compounds are organic compounds with the general structure (O=CR)−Cα=Cβ−R. Such compounds include enones and enals, but also carboxylic acids and the corresponding esters and amides. In these compounds, the carbonyl group is conjugated with an alkene. Unlike the case for carbonyls without a flanking alkene group, α,β-unsaturated carbonyl compounds are susceptible to attack by nucleophiles at the β-carbon. This pattern of reactivity is called vinylogous. Examples of unsaturated carbonyls are acrolein (propenal), mesityl oxide, acrylic acid, and maleic acid. Unsaturated carbonyls can be prepared in the laboratory in an aldol reaction and in the Perkin reaction.

References

  1. Saul Patai, ed. (1981). Sulphinic Acids, Esters and Derivatives. PATAI'S Chemistry of Functional Groups. John Wiley & Sons. doi:10.1002/9780470772270. ISBN   9780470772270.
  2. 1 2 3 4 5 6 7 D. Schubart "Sulfinic Acids and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2012, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a25_461
  3. 1 2 Bredereck, Hellmut; Wagner, Adolf; Beck, Heinz; Klein, Rainer-Joachim (1960) [2 July 1960]. "Die Struktur der Sulfinsäureanhydride" [The structure of sulfinic acid anhydrides]. Chemische Berichte (in German). 93 (11): 2736–2742. doi:10.1002/cber.19600931145.
  4. Kice, John L.; Guaraldi, Giancarlo; Venier, Clifford G. (Nov 1966). "The Mechanism of the Disproportionation of Sulfinic Acids. Rate and Equilibrium Constants for the Sulfinic Acid-Sulfinyl Sulfone (Sulfinic Anhydride) Equilibrium". The Journal of Organic Chemistry. 31 (11): 3561–3567. doi:10.1021/jo01349a021. ISSN   0022-3263.
  5. Denzer, George C., Jr.; Allen, Paul, Jr.; Conway, Patrick; van der Veen, James M. (Oct 1966) [17 March 1966]. "The preparation of α-disulfones by cobalt(III) oxidation". J. Org. Chem. 31 (10): 3418–3419. doi:10.1021/jo01348a514.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Whitmore, F. C.; Hamilton, F. H. (1922). "Sodium p-Toluenesulfinic Acid". 2: 89. doi:10.15227/orgsyn.002.0089.{{cite journal}}: Cite journal requires |journal= (help)