Sulfenic acid

Last updated
While sulfenic acids have the potential of exhibiting tautomerism, spectroscopic measurements as well as theoretical studies indicate that the structure on the left predominates almost exclusively. Sulfenic-acid-tautomerism-2D.png
While sulfenic acids have the potential of exhibiting tautomerism, spectroscopic measurements as well as theoretical studies indicate that the structure on the left predominates almost exclusively.

In chemistry, a sulfenic acid is an organosulfur compound and oxoacid with the general formula R−S−OH. It is the first member of the family of organosulfur oxoacids, which also include sulfinic acids (R−S(=O)OH) and sulfonic acids (R−S(=O)2OH), respectively. The base member of the sulfenic acid series with R = H is hydrogen thioperoxide.

Contents

Properties

In contrast to sulfinic and sulfonic acids, simple sulfenic acids, such as methanesulfenic acid, CH3SOH, are highly reactive and cannot be isolated in solution. In the gas phase the lifetime of methanesulfenic acid is about one minute. The gas phase structure of methanesulfenic acid was found by microwave spectroscopy (rotational spectroscopy) to be CH3–S–O–H. [1] Sulfenic acids can be stabilized through steric effects, which prevent the sulfenic acid from condensing with itself to form thiosulfinates, RS(O)SR, such as allicin from garlic. Through the use of X-ray crystallography, the structure of such stabilized sulfenic acids were shown to be R–S–O–H. [2] [3] The stable, sterically hindered sulfenic acid 1-triptycenesulfenic acid has been found to have a pKa of 12.5 and an O–H bond-dissociation energy (bde) of 71.9 ± 0.3 kcal/mol, which can be compared to a pKa of ≥14 and O–H BDE of ~88 kcal/mol for the (valence) isoelectronic hydroperoxides, R O O H. [4]

Formation and occurrence

Peroxiredoxins

Peroxiredoxins are ubiquitous and abundant enzymes that detoxify peroxides. They function by the conversion of a cysteine residue to a sulfenic acid. The sulfenic acid then converts to a disulfide by reaction with another residue of cysteine. [5]

Garlic and onions

Sulfenic acids are produced by the enzymatic decomposition of alliin and related compounds following tissue damage to garlic, onions, and other plants of the genus Allium . 1-Propenesulfenic acid, formed when onions are cut, is rapidly rearranged by a second enzyme, the lachrymatory factor synthase, giving syn-propanethial-S-oxide. [6] 2-Propenesulfenic acid, formed from allicin, is thought to be responsible for garlic’s potent antioxidant activity. [7] Mass spectrometry with a DART ion source were used to identify 2-propenesulfenic formed when garlic is cut or crushed and to demonstrate that this sulfenic acid has a lifetime of less than one second. [8] The pharmacological activity of certain drugs, such as omeprazole, esomeprazole, ticlopidine, clopidogrel, and prasugrel is proposed to involve sulfenic acid intermediates. [9] Oxidation of cysteine residues in protein to the corresponding protein sulfenic acids is suggested to be important in redox-mediated signal transduction. [10] [11]

Sulfenic acid forms part of the series of chemical reactions that occur when cutting onions. The lachrymal glands are irritated by the end product of the reactions, syn-Propanethial-S-oxide, causing tears. [12]

Organic and inorganic chemistry

Dioctadecyl 3,3'-thiodipropanoate: Oxidation to the sulfoxide and subsequent Ei elimination generates a sulfenic acid. This material is used as a polymer stabilizer where it protects against long term heat ageing Dioctadecyl 3,3'-thiodipropanoate 100.svg
Dioctadecyl 3,3'-thiodipropanoate: Oxidation to the sulfoxide and subsequent Ei elimination generates a sulfenic acid. This material is used as a polymer stabilizer where it protects against long term heat ageing

Sulfoxides can undergo thermal elimination via an Ei mechanism to yield vinyl alkenes and sulfenic acids: [13] [14]

Compounds which react in this manner are used as polymer stabilizers where they protects against long term heat ageing, [15] structures based on thiodipropionate esters are popular. [16]

Sulfenate-based ligands are found at the active site of the nitrile hydratases. The S=O group is proposed as the nucleophile that attacks the nitrile. [17]

Other sulfenyl compounds

Cyclohexylthiophthalimide is an example of a sulfenamide, yet another derivative of sulfenic acid. N-cyclohexylthiophthalimide.png
Cyclohexylthiophthalimide is an example of a sulfenamide, yet another derivative of sulfenic acid.

The prefix sulfenyl in organic nomenclature denotes the RS group (R  H). One example is methanesulfenyl chloride, CH3SCl. [18]


Sulfenate esters have the formula RSOR′. They arise by the reaction of sulfenyl chlorides on alcohols. [19] Sulfenate esters are intermediates in the Mislow-Evans rearrangement of allyl sulfoxides. [13] Sulfenamides have the formula RSNR′2.

Related Research Articles

<span class="mw-page-title-main">Cysteine</span> Proteinogenic amino acid

Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, with only L-cysteine being found in nature.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

<span class="mw-page-title-main">Glutathione</span> Ubiquitous antioxidant compound in living organisms

Glutathione is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources such as reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. It is a tripeptide with a gamma peptide linkage between the carboxyl group of the glutamate side chain and cysteine. The carboxyl group of the cysteine residue is attached by normal peptide linkage to glycine.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Allicin</span> Chemical compound

Allicin is an organosulfur compound obtained from garlic. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin is unstable and quickly changes into a series of other sulfur-containing compounds such as diallyl disulfide. Allicin is an antifeedant, i.e. the defense mechanism against attacks by pests on the garlic plant.

<span class="mw-page-title-main">Thioester</span> Organosulfur compounds of the form R–SC(=O)–R’

In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R’. They are analogous to carboxylate esters with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix. They are the product of esterification of a carboxylic acid with a thiol. In biochemistry, the best-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA. The R and R' represent organyl groups, or H in the case of R.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

Organoselenium chemistry is the science exploring the properties and reactivity of organoselenium compounds, chemical compounds containing carbon-to-selenium chemical bonds. Selenium belongs with oxygen and sulfur to the group 16 elements or chalcogens, and similarities in chemistry are to be expected. Organoselenium compounds are found at trace levels in ambient waters, soils and sediments.

<span class="mw-page-title-main">Thial</span> Chemical group (–CH=S)

In organic chemistry, a thial or thioaldehyde is a functional group which is similar to an aldehyde, RC(O)H, in which a sulfur (S) atom replaces the oxygen (O) atom of the aldehyde. Thioaldehydes are even more reactive than thioketones. Unhindered thioaldehydes are generally too reactive to be isolated — for example, thioformaldehyde, H2C=S, condenses to the cyclic trimer 1,3,5-trithiane. Thioacrolein, H2C=CHCH=S, formed by decomposition of allicin from garlic, undergoes a self Diels-Alder reaction giving isomeric vinyldithiins. While thioformaldehyde is highly reactive, it is found in interstellar space along with its mono- and di-deuterated isotopologues. With sufficient steric bulk, however, stable thioaldehydes can be isolated.

<i>syn</i>-Propanethial-<i>S</i>-oxide Chemical compound

syn-Propanethial S-oxide (or (Z)-propanethial S-oxide), a member of a class of organosulfur compounds known as thiocarbonyl S-oxides (formerly "sulfines"), is a volatile liquid that acts as a lachrymatory agent (triggers tearing and stinging on contact with the eyes). The chemical is released from onions, Allium cepa, as they are sliced. The release is due to the breaking open of the onion cells and their releasing enzymes called alliinases, which then break down amino acid sulfoxides, generating sulfenic acids. A specific sulfenic acid, 1-propenesulfenic acid, formed when onions are cut, is rapidly rearranged by a second enzyme, called the lachrymatory factor synthase or LFS, giving syn-propanethial S-oxide. The gas diffuses through the air and, on contact with the eye, it stimulates sensory neurons creating a stinging, painful sensation. Tears are released from the tear glands to dilute and flush out the irritant. A structurally related lachrymatory compound, syn-butanethial S-oxide, C4H8OS, has been found in another genus Allium plant, Allium siculum.

<span class="mw-page-title-main">Alliinase</span> Class of enzyme

In enzymology, an alliin lyase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Sulfenyl chloride</span> Chemical group (R–S–Cl)

In organosulfur chemistry, a sulfenyl chloride is a functional group with the connectivity R−S−Cl, where R is alkyl or aryl. Sulfenyl chlorides are reactive compounds that behave as sources of RS+. They are used in the formation of RS−N and RS−O bonds. According to IUPAC nomenclature they are named as alkyl thiohypochlorites, i.e. esters of thiohypochlorous acid.

<span class="mw-page-title-main">Thiosulfinate</span> Functional group

In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R. Thiolsulfinates are also named as alkanethiosulfinic acid esters.

<i>Allium stipitatum</i> Species of flowering plant

Allium stipitatum, Persian shallot, is an Asian species of onion native to central and southwestern Asia.

<span class="mw-page-title-main">Sulfinyl halide</span> Class of chemical compounds

Sulfinyl halide have the general formula R−S(O)−X, where X is a halogen. They are intermediate in oxidation level between sulfenyl halides, R−S−X, and sulfonyl halides, R−SO2−X. The best known examples are sulfinyl chlorides, thermolabile, moisture-sensitive compounds, which are useful intermediates for preparation of other sufinyl derivatives such as sulfinamides, sulfinates, sulfoxides, and thiosulfinates. Unlike the sulfur atom in sulfonyl halides and sulfenyl halides, the sulfur atom in sulfinyl halides is chiral, as shown for methanesulfinyl chloride.

<span class="mw-page-title-main">Selenenic acid</span> Class of chemical compounds

A selenenic acid is an organoselenium compound and an oxoacid with the general formula RSeOH, where R ≠ H. It is the first member of the family of organoselenium oxoacids, which also include seleninic acids and selenonic acids, which are RSeO2H and RSeO3H, respectively. Selenenic acids derived from selenoenzymes are thought to be responsible for the antioxidant activity of these enzymes. This functional group is sometimes called SeO-selenoperoxol.

<span class="mw-page-title-main">3-Arylpropiolonitriles</span> Chemical compound

3-Arylpropiolonitriles (APN) belong to a class of electron-deficient alkyne derivatives substituted by two electron-withdrawing groups – a nitrile and an aryl moieties. Such activation results in improved selectivity towards highly reactive thiol-containing molecules, namely cysteine residues in proteins. APN-based modification of proteins was reported to surpass several important drawbacks of existing strategies in bioconjugation, notably the presence of side reactions with other nucleophilic amino acid residues and the relative instability of the resulting bioconjugates in the blood stream. The latter drawback is especially important for the preparation of targeted therapies, such as antibody-drug conjugates.

<span class="mw-page-title-main">Selenosulfide</span>

In chemistry, a selenosulfide refers to distinct classes of inorganic and organic compounds containing sulfur and selenium. The organic derivatives contain Se-S bonds, whereas the inorganic derivatives are more variable.

References

  1. Penn RE, Block E, Revelle LK (1978). "Methanesulfenic Acid". Journal of the American Chemical Society. 100 (11): 3622–3624. doi:10.1021/ja00479a068.
  2. Goto K, Holler M, Okazaki R (1997). "Synthesis, Structure, and Reactions of a Sulfenic Acid Bearing a Novel Bowl-Type Substituent: The First Synthesis of a Stable Sulfenic Acid by Direct Oxidation of a Thiol". Journal of the American Chemical Society. 119 (6): 1460–1461. doi:10.1021/ja962994s.
  3. Ishii A, Komiya K, Nakayama J (1996). "Synthesis of a Stable Sulfenic Acid by Oxidation of a Sterically Hindered Thiol (Thiophenetriptycene-8-thiol)1 and Its Characterization". Journal of the American Chemical Society. 118 (50): 12836–12837. doi:10.1021/ja962995k.
  4. McGrath AJ, Garrett GE, Valgimigli L, Pratt DA (2010). "The redox chemistry of sulfenic acids". Journal of the American Chemical Society. 132 (47): 16759–16761. doi:10.1021/ja1083046. PMID   21049943.
  5. Rhee, Sue Goo; Kil, In Sup (2017). "Multiple Functions and Regulation of Mammalian Peroxiredoxins". Annual Review of Biochemistry. 86: 749–775. doi:10.1146/annurev-biochem-060815-014431. PMID   28226215.
  6. Block, E. (2010). Garlic and Other Alliums: The Lore and the Science. Royal Society of Chemistry. ISBN   978-0-85404-190-9.
  7. Vaidya V, Ingold KU, Pratt DA (2009). "Garlic: Source of the Ultimate Antioxidants – Sulfenic Acids". Angewandte Chemie International Edition. 48 (1): 157–60. doi:10.1002/anie.200804560. PMID   19040240.
  8. Block E, Dane AJ, Thomas S, Cody RB (2010). "Applications of Direct Analysis in Real Time–Mass Spectrometry (DART-MS) in Allium Chemistry. 2-Propenesulfenic and 2-Propenesulfinic Acids, Diallyl Trisulfane S-Oxide and Other Reactive Sulfur Compounds from Crushed Garlic and Other Alliums". Journal of Agricultural and Food Chemistry. 58 (8): 4617–4625. doi:10.1021/jf1000106. PMID   20225897.
  9. Mansuy D, Dansette PM (2011). "Sulfenic acids as reactive intermediates in xenobiotic metabolism". Archives of Biochemistry and Biophysics. 507 (1): 174–185. doi:10.1016/j.abb.2010.09.015. PMID   20869346.
  10. Kettenhofen, NJ, Wood, MJ (2010). "Formation, Reactivity, and Detection of Protein Sulfenic Acids". Chem. Res. Toxicol. 23 (11): 1633–1646. doi:10.1021/tx100237w. PMC   2990351 . PMID   20845928.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Gupta, Vinayak; Kate S. Carroll (February 2014). "Sulfenic acid chemistry, detection and cellular lifetime". Biochimica et Biophysica Acta (BBA) - General Subjects. 1840 (2): 847–875. doi:10.1016/j.bbagen.2013.05.040. PMC   4184475 . PMID   23748139.
  12. "Why does chopping an onion make you cry?". Everyday Mysteries. The Library of Congress. Retrieved 1 April 2019.
  13. 1 2 Braverman, S., "Rearrangements involving sulfenic acids and their derivatives," in Sulfenic Acids and Derivatives, 1990, John Wiley & Sons. doi : 10.1002/9780470772287.ch8
  14. Michael Carrasco, Robert J. Jones, Scott Kamel, H. Rapoport, Thien Truong (1992). "N-(Benzyloxycarbonyl)-L-Vinylglycine Methyl Ester". Organic Syntheses. 70: 29. doi:10.15227/orgsyn.070.0029.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. Kröhnke, C. (2016). "Polymer Stabilization". Reference Module in Materials Science and Materials Engineering. doi:10.1016/B978-0-12-803581-8.01487-9. ISBN   978-0-12-803581-8.
  16. Armstrong, C.; Plant, M.A.; Scott, G. (February 1975). "Mechanisms of antioxidant action: the nature of the redox behaviour of thiodipropionate esters in polypropylene". European Polymer Journal. 11 (2): 161–167. doi:10.1016/0014-3057(75)90141-X.
  17. Harrop, Todd C.; Mascharak, Pradip K. (2004). "Fe(III) and Co(III) Centers with Carboxamido Nitrogen and Modified Sulfur Coordination: Lessons Learned from Nitrile Hydratase". Accounts of Chemical Research. 37 (4): 253–260. doi:10.1021/ar0301532. PMID   15096062.
  18. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " sulfenyl groups ". doi : 10.1351/goldbook.S06098
  19. Petrovic, Goran; Saicic, Radomir N.; Cekovic, Zivorad (2005). "Phenylsulfenylation of Nonactivated Carbon Atom by Photolysiis of Alkyl Benzenesulfenated: Preparation of 2-Phenylthio-5-heptanol". Organic Syntheses. 81: 244. doi: 10.15227/orgsyn.081.0244 .