Arsole

Last updated
Arsole
Structural formula of arsole with an implicit hydrogen Arsole.png
Structural formula of arsole with an implicit hydrogen
Ball-and-stick model of the arsole molecule Arsole-Spartan-MP2-3D-balls-B.png
Ball-and-stick model of the arsole molecule
Names
Preferred IUPAC name
1H-Arsole
Other names
Arsenole
Arsacyclopentadiene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C4H5As/c1-2-4-5-3-1/h1-5H Yes check.svgY
    Key: NXHAKHHKDBVHPV-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H5As/c1-2-4-5-3-1/h1-5H
    Key: NXHAKHHKDBVHPV-UHFFFAOYAK
  • [AsH]1C=CC=C1
Properties
C4H4AsH
Molar mass 128.00 g mol−1
Related compounds
Related compounds
Pyrrole, phosphole, bismole, stibole
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Arsole, also called arsenole [1] or arsacyclopentadiene, is an organoarsenic compound with the formula C4H4AsH. It is classified as a metallole and is isoelectronic to and related to pyrrole except that an arsenic atom is substituted for the nitrogen atom. Whereas the pyrrole molecule is planar, the arsole molecule is not, and the hydrogen atom bonded to arsenic extends out of the molecular plane. Arsole is only moderately aromatic, with about 40% the aromaticity of pyrrole. [2] Arsole itself has not been reported in pure form, but several substituted analogs called arsoles exist. Arsoles and more complex arsole derivatives have similar structure and chemical properties to those of phosphole derivatives. When arsole is fused to a benzene ring, this molecule is called arsindole, or benzarsole. [3]

Contents

Nomenclature

Arsole belongs to the series of heterocyclic pnictogen compounds. The naming of cyclic organoarsenic compounds such as arsole is based on an extension of the Hantzsch–Widman nomenclature system [4] approved by IUPAC, as summarized below: [5]

Ring size Unsaturated ring Saturated ring
3ArsireneArsirane
4ArseteArsetane
5ArsoleArsolane
6 Arsinine Arsinane
7ArsepineArsepane
8ArsocineArsocane
9ArsonineArsonane
10ArsecineArsecane

Because of its similarity to the English slang word "arsehole" (in common use outside North America), the name "arsole" has been considered a target of fun, a "silly name", [6] [7] and one of several chemical compounds with an unusual name. However, this "silly name" coincidence has also stimulated detailed scientific studies. [2] [ failed verification ][ dubious ]

Properties

Calculated geometry and inversion barrier energy E for some C4H4MH molecules [8]
Md(M-C), Å d(M-H), Åα(C-M-C), °E, kJ/mol
N1.371.011100
P1.811.42590.567
As1.941.5386125
Sb2.141.72580.5160
Bi2.241.8278220

Arsole itself has not been isolated experimentally yet, but the molecular geometry and electronic configuration of arsole have been studied theoretically. Calculations also addressed properties of simple arsole derivatives, where hydrogen atoms are substituted by other atoms or small hydrocarbon groups, and there are experimental reports on chemical properties of more complex arsole derivatives. The situation is similar for other C4H4MH metalloles where M = P, As, Sb and Bi.

Planarity

Calculations suggest that whereas pyrrole (C4H4NH) molecule is planar, phosphole (C4H4PH) and heavier metalloles are not, and their pnictogen-bonded hydrogen atom extends out of plane. [9] A similar tendency is predicted for the fluorinated C4F4MH derivatives (M = N, P, As, ..), but the inversion barriers are about 50–100% higher. The planarity is lost even in pyrrole when its nitrogen-bonded hydrogen atom is substituted, e.g., with fluorine. However, the planarity is evaluated in calculation by the energy required to convert between the two configurations where the M-H bond is extending left or right from the molecular plane. However, non-zero (small) value of this energy does not necessarily mean the molecule has low symmetry, because of the possibility of thermal or quantum tunneling between the two configurations. [8]

Aromaticity

Aromaticity of the arsole manifests itself in delocalization and resonance of its ring electrons. It is closely related to planarity in that the more planar the molecule the stronger its aromaticity. [10] Aromaticity of arsole and its derivatives has been debated for years both from experimental and theoretical points of view. A 2005 review combined with quantum chemical calculations concluded that arsole itself is "moderately" aromatic as its ring current is 40% that of pyrrole, which is known to be aromatic. However, comparable ring current was calculated for cyclopentadiene, which has long been regarded as non-aromatic. [2] Other reports suggest that the aromaticity (and planarity) can vary between arsole derivatives. [9]

Chemical properties (arsole derivatives)

Chemical properties of arsole derivatives have been studied experimentally; they are similar to those of phosphole and its derivatives. [11] Substitution of all hydrogen atoms in arsole with phenyl groups yields yellow needles of crystalline pentaphenylarsole, which has a melting point of 215 °C. This complex can be prepared, at a yield of 50–93%, by reacting 1,4-diiodo-1,2,3,4-tetraphenylbutadiene [12] or 1,4-dilithio-1,2,3,4-tetraphenylbutadiene with phenylarsenous dichloride (C6H5AsCl2) in ether.

Pentaphenylarsole synthesis.svg

Substituting in this reaction arsenic trichloride for phenylarsenous dichloride yields 1-chloro-2,3,4,5-tetraphenylarsole, which also forms yellow needles but with a lower melting point of 182–184 °C. Pentaphenylarsole can further be oxidized with hydrogen peroxide resulting in yellow crystals with melting point of 252 °C. It can also be reacted with iron pentacarbonyl (Fe(CO)5) in isooctane at 150 °C to yield a solid organoarsenic compound with the formula C34H25As,Fe(CO)3. [11] Reacting pentaphenylarsole with metallic lithium or potassium yields 1,2,3-triphenyl naphthalene. [13]

Reaction of phenylarsenous dichloride with linear diphenyls results in 1,2,5-triphenylarsole (see below), a solid with a melting point of about 170 °C. [14] This compound forms various anions upon treatment with alkali metals. [15]

Substituted arsole.svg

See also

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Heterocyclic compound</span> Molecule with one or more rings composed of different elements

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

Pyrimidine is an aromatic, heterocyclic, organic compound similar to pyridine. One of the three diazines, it has nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine and pyridazine.

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

<span class="mw-page-title-main">Phenyl group</span> Cyclic chemical group (–C₆H₅)

In organic chemistry, the phenyl group, or phenyl ring, is a cyclic group of atoms with the formula C6H5, and is often represented by the symbol Ph. The phenyl group is closely related to benzene and can be viewed as a benzene ring, minus a hydrogen, which may be replaced by some other element or compound to serve as a functional group. A phenyl group has six carbon atoms bonded together in a hexagonal planar ring, five of which are bonded to individual hydrogen atoms, with the remaining carbon bonded to a substituent. Phenyl groups are commonplace in organic chemistry. Although often depicted with alternating double and single bonds, the phenyl group is chemically aromatic and has equal bond lengths between carbon atoms in the ring.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Hückel's rule</span> Method of determining aromaticity in organic molecules

In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931. The succinct expression as the 4n + 2 rule has been attributed to W. v. E. Doering (1951), although several authors were using this form at around the same time.

<span class="mw-page-title-main">Imidazole</span> Chemical compound

Imidazole (ImH) is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and has non-adjacent nitrogen atoms in meta-substitution.

Simple aromatic rings, also known as simple arenes or simple aromatics, are aromatic organic compounds that consist only of a conjugated planar ring system. Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules. Typical simple aromatic compounds are benzene, indole, and pyridine.

<span class="mw-page-title-main">Cyclic compound</span> Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

Organoarsenic chemistry is the chemistry of compounds containing a chemical bond between arsenic and carbon. A few organoarsenic compounds, also called "organoarsenicals," are produced industrially with uses as insecticides, herbicides, and fungicides. In general these applications are declining in step with growing concerns about their impact on the environment and human health. The parent compounds are arsane and arsenic acid. Despite their toxicity, organoarsenic biomolecules are well known.

<span class="mw-page-title-main">Metallole</span>

Metalloles are metallacycle derivatives of cyclopentadiene in which the carbon atom at position 5, the saturated carbon, is replaced by a heteroatom. In contrast to its parent compound, the numbering of the metallole starts at the heteroatom. Some of these compounds are described as organometallic compounds, but in the list below quite a number of metalloids are present too. Many metalloles are fluorescent. Polymeric derivatives of pyrrole and thiophene are of interest in molecular electronics. Metalloles, which can also be viewed as structural analogs of pyrrole, include:

<span class="mw-page-title-main">Arsabenzene</span> Chemical compound

Arsabenzene (IUPAC name: arsinine) is an organoarsenic heterocyclic compound with the chemical formula C5H5As. It belongs to a group of compounds called heteroarenes that have the general formula C5H5E (E= N, P, As, Sb, Bi).

<span class="mw-page-title-main">Bismole</span> Chemical compound

Bismole is a theoretical heterocyclic organic compound, a five-membered ring with the formula C4H4BiH. It is classified as a metallole. It can be viewed as a structural analog of pyrrole, with bismuth replacing the nitrogen atom of pyrrole. The unsubstituted compound has not been isolated due to the high energy of the Bi-H bond. Substituted derivatives, which have been synthesized, are called bismoles.

<span class="mw-page-title-main">Stannole</span> Chemical compound

Stannole is an organotin compound with the formula (CH)4SnH2. It is classified as a metallole, i.e. an unsaturated five-membered ring containing a heteroatom. It is a structural analog of cyclopentadiene, with tin replacing the saturated carbon atom. Substituted derivatives, which have been synthesized, are also called stannoles.

<i>N</i>-heterocyclic silylene Chemical compound

An N-Heterocyclic silylene (NHSi) is an uncharged heterocyclic chemical compound consisting of a divalent silicon atom bonded to two nitrogen atoms. The isolation of the first stable NHSi, also the first stable dicoordinate silicon compound, was reported in 1994 by Michael Denk and Robert West three years after Anthony Arduengo first isolated an N-heterocyclic carbene, the lighter congener of NHSis. Since their first isolation, NHSis have been synthesized and studied with both saturated and unsaturated central rings ranging in size from 4 to 6 atoms. The stability of NHSis, especially 6π aromatic unsaturated five-membered examples, make them useful systems to study the structure and reactivity of silylenes and low-valent main group elements in general. Though not used outside of academic settings, complexes containing NHSis are known to be competent catalysts for industrially important reactions. This article focuses on the properties and reactivity of five-membered NHSis.

<span class="mw-page-title-main">Phosphorus porphyrin</span> Organophosphorus compound

Phosphorus-centered porphyrins are conjugated polycyclic ring systems consisting of either four pyrroles with inward-facing nitrogens and a phosphorus atom at their core or porphyrins with one of the four pyrroles substituted for a phosphole. Unmodified porphyrins are composed of pyrroles and linked by unsaturated hydrocarbon bridges often acting as multidentate ligands centered around a transition metal like Cu II, Zn II, Co II, Fe III. Being highly conjugated molecules with many accessible energy levels, porphyrins are used in biological systems to perform light-energy conversion and modified synthetically to perform similar functions as a photoswitch or catalytic electron carriers. Phosphorus III and V ions are much smaller than the typical metal centers and bestow distinct photochemical properties unto the porphyrin. Similar compounds with other pnictogen cores or different polycyclic rings coordinated to phosphorus result in other changes to the porphyrin’s chemistry.

<span class="mw-page-title-main">Bismuthinidene</span> Class of organobismuth compounds

Bismuthinidenes are a class of organobismuth compounds, analogous to carbenes. These compounds have the general form R-Bi, with two lone pairs of electrons on the central bismuth(I) atom. Due to the unusually low valency and oxidation state of +1, most bismuthinidenes are reactive and unstable, though in recent decades, both transition metals and polydentate chelating Lewis base ligands have been employed to stabilize the low-valent bismuth(I) center through steric protection and π donation either in solution or in crystal structures. Lewis base-stabilized bismuthinidenes adopt a singlet ground state with an inert lone pair of electrons in the 6s orbital. A second lone pair in a 6p orbital and a single empty 6p orbital make Lewis base-stabilized bismuthinidenes ambiphilic.

Pnictogen-substituted tetrahedranes are pnictogen-containing analogues of tetrahedranes with the formula RxCxPn4-x. Computational work has indicated that the incorporation of pnictogens to the tetrahedral core alleviates the ring strain of tetrahedrane. Although theoretical work on pnictogen-substituted tetrahedranes has existed for decades, only the phosphorus-containing species have been synthesized. These species exhibit novel reactivities, most often through ring-opening and polymerization pathways. Phosphatetrahedranes are of interest as new retrons for organophosphorus chemistry. Their strain also make them of interest in the development of energy-dense compounds.

References

  1. Mann 1970: "In English this ring system has frequently named arsenole 'for euphony'."
  2. 1 2 3 M. P. Johansson; J. Juselius (2005). "Arsole Aromaticity Revisited". Lett. Org. Chem. 2 (5): 469–474. doi:10.2174/1570178054405968. Using quantum chemical methodology, we reinvestigate the aromaticity of the much debated arsole, using the newly developed gauge-including magnetically induced currents (GIMIC) method. GIMIC provides a quantitative measure of the induced ring current strength, showing arsole to be moderately aromatic.
  3. A. Muranaka; S. Yasuike; C.-Y. Liu; J. Kurita; N. Kakusawa; T. Tsuchiya; M. Okuda; N. Kobayashi; Y. Matsumoto; K. Yoshida; D. Hashizume; M. Uchiyama (2009). "Effect of Periodic Replacement of the Heteroatom on the Spectroscopic Properties of Indole and Benzofuran Derivatives". J. Phys. Chem. A . 113 (2): 464–473. doi:10.1021/jp8079843. PMID   19099440.
  4. "Revision of the Extended Hantzsch-Widman System of Nomenclature for Heteromonocycles Archived 2017-09-08 at the Wayback Machine " at IUPAC, retrieved 29 Sept 2008
  5. Nicholas C. Norman (1998). Chemistry of arsenic, antimony, and bismuth. Springer. p. 235. ISBN   978-0-7514-0389-3 . Retrieved 15 March 2011.
  6. Richard Watson Todd (25 May 2007). Much ado about English: up and down the bizarre byways of a fascinating language. Nicholas Brealey Publishing. p. 138. ISBN   978-1-85788-372-5 . Retrieved 15 March 2011.
  7. Paul W May, Molecules with Silly or Unusual Names, publ. 2008 Imperial College Press, ISBN   978-1-84816-207-5(pbk). See also the Web page "Molecules with Silly or Unusual Names Archived 2009-09-07 at the Wayback Machine " at the School of Chemistry, University of Bristol, (retrieved 29 Sept 2008)
  8. 1 2 Pelzer, Silke; Wichmann, Karin; Wesendrup, Ralf; Schwerdtfeger, Peter (2002). "Trends in Inversion Barriers IV. The Group 15 Analogous of Pyrrole". The Journal of Physical Chemistry A. 106 (26): 6387–6394. doi:10.1021/jp0203494.
  9. 1 2 Tadeusz Marek Krygowski; Michal K. Cyrański; M. Agostinha R. Matos (2009). Aromaticity in Heterocyclic Compounds. Springer. pp. 47–. ISBN   978-3-540-68329-2 . Retrieved 21 March 2011.
  10. Pelloni, Stefano; Lazzeretti, Paolo (2007). "Magnetotropicity of phosphole and its arsenic analogue". Theoretical Chemistry Accounts. 118: 89–97. doi:10.1007/s00214-007-0247-0. S2CID   97528113.
  11. 1 2 Mann, Frederick George (1970). The heterocyclic derivatives of phosphorus, arsenic, antimony, and bismuth. John Wiley and Sons. pp. 357–360. ISBN   978-0-471-37489-3. Archived from the original on 13 June 2014. Retrieved 21 March 2011.
  12. Braye, E. H.; Hubel, W.; Caplier, I. (1961). "New Unsaturated Heterocyclic Systems. I". Journal of the American Chemical Society. 83 (21): 4406–4413. doi:10.1021/ja01482a026.
  13. C. W. Bird; Gordon William Henry Cheeseman (31 December 1973). Aromatic and Heteroatomic Chemistry. Royal Society of Chemistry. pp. 23–. ISBN   978-0-85186-753-3. Archived from the original on 13 June 2014. Retrieved 23 March 2011.
  14. Gottfried Märkl & Hagen Hauptmann (1972). "Unusual Substitution in an Arsole Ring" (PDF). Angewandte Chemie International Edition in English. 11 (5): 441. doi:10.1002/anie.197204411. Archived (PDF) from the original on 2011-05-24. Retrieved 2011-03-23.
  15. Märkl, G (1983). "Synthese von 1-phenyl-2,5-diaryl(dialkyl)-arsolen; umsetzung der arsole mit alkalimetallen und lithiumorganylen". Journal of Organometallic Chemistry. 249 (2): 335–363. doi:10.1016/S0022-328X(00)99433-6.