Names | |
---|---|
IUPAC name L-γ-Glutamyl-S-nitroso-L-cysteinylglycine | |
Systematic IUPAC name (2S)-2-Amino-5-({(2R)-1-[(carboxymethyl)amino]-3-(nitrososulfanyl)-1-oxopropan-2-yl}amino)-5-oxopentanoic acid | |
Other names Glutathione thionitrite; S-Nitroso-L-glutathione; SNOG; GSNO | |
Identifiers | |
3D model (JSmol) | |
3566211 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.165.055 |
MeSH | S-Nitrosoglutathione |
PubChem CID | |
RTECS number |
|
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C10H16N4O7S | |
Molar mass | 336.32 g·mol−1 |
log P | −2.116 |
Acidity (pKa) | 2.212 |
Basicity (pKb) | 11.785 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
S-Nitrosoglutathione (GSNO) is an endogenous S-nitrosothiol (SNO) that plays a critical role in nitric oxide (NO) signaling and is a source of bioavailable NO. NO coexists in cells with SNOs that serve as endogenous NO carriers and donors. SNOs spontaneously release NO at different rates and can be powerful terminators of free radical chain propagation reactions, by reacting directly with ROO• radicals, yielding nitro derivatives as end products. [1] NO is generated intracellularly by the nitric oxide synthase (NOS) family of enzymes: nNOS, eNOS and iNOS while the in vivo source of many of the SNOs is unknown. In oxygenated buffers, however, formation of SNOs is due to oxidation of NO to dinitrogen trioxide (N2O3). [2] Some evidence suggests that both exogenous NO and endogenously derived NO from nitric oxide synthases can react with glutathione to form GSNO.
The enzyme GSNO reductase (GSNOR) reduces S-nitrosoglutathione (GSNO) to an unstable intermediate, S-hydroxylaminoglutathione, which then rearranges to form glutathione sulfonamide, or in the presence of GSH, forms oxidized glutathione (GSSG) and hydroxylamine. [3] [4] [5] Through this catabolic process, GSNOR regulates the cellular concentrations of GSNO and plays a central role in regulating the levels of endogenous S-nitrosothiols and controlling protein S-nitrosylation-based signaling.
The generation of GSNO can serve as a stable and mobile NO pool which can effectively transduce NO signaling. [6] [7] Unlike other low molecular weight messengers that bind to and activate target cellular receptors, NO signaling is mediated by a coordinating complex between NO and transition metals or target cellular proteins, often via S-nitrosylation of cysteine residues. [8] [9] [10] Studies suggest that NO metabolism has a significant role in human cardiovascular and respiratory diseases as well as in immune tolerance during organ transplantation. [11] [12] [13] [14]
GSNO and NO concentrations regulate respiratory function by modulating airway tone and pro- and anti-inflammatory responses in the respiratory tract. [14] [15] Because NO is a labile gas and endogenous levels are difficult to manipulate, it has been proposed that exogenous GSNO could be used to regulate circulating levels of NO and NO-derived species, and GSNO could have value in patients with pulmonary diseases such as cystic fibrosis. Consistent with this therapeutic goal, a recent study showed that acute treatment with aerosolized GSNO was well tolerated by cystic fibrosis patients. [14]
SNOs in the hepatic mitochondria appear to influence proper functioning of the liver. Mitochondrial SNO-proteins inhibit Complex I of the electron transport chain; modulate mitochondrial reactive oxygen species (ROS) production; influence calcium-dependent opening of the mitochondrial permeability transition pore; promote selective importation of mitochondrial proteins; and stimulate mitochondrial fission. Altered redox balance plays a crucial role in the pathogenesis of liver diseases including steatosis, steatohepatitis, and fibrosis. The ease of reversibility and the interplay of S-nitrosating and denitrosating enzymatic reactions support the hypothesis that SNOs regulate the mitochondrion through redox mechanisms. [16]
In a study evaluating the effects on ursodeoxycholic acid (UDCA) on bile flow and cirrhosis, NO was found in bile as SNOs, primarily GSNO. UDCA-stimulated biliary NO secretion was abolished by the inhibition of iNOS with L-NAME in isolated perfused livers and also in rat livers depleted of GSH with buthionine sulfoximine. Moreover, the biliary secretion of NO species was significantly diminished in UDCA-infused transport mutant [ATP–binding cassette C2/multidrug resistance–associated protein 2–deficient] rats, and this finding was consistent with the involvement of the glutathione carrier ABCC2/Mrp2 in the canalicular transport of GSNO. It was particularly noteworthy that in cultured normal rat cholangiocytes, GSNO activated protein kinase B, protected against apoptosis, and enhanced UDCA-induced ATP release to the medium. [17] Finally, they demonstrated that retrograde GSNO infusion into the common bile duct increased bile flow and biliary bicarbonate secretion. The study concluded that UDCA-induced biliary secretion of GSNO contributed to stimulating ductal secretion of bile.
GSNO, along with glutathione and oxidized glutathione (GSSG), have been found to bind to the glutamate recognition site of the NMDA and AMPA receptors (via their γ-glutamyl moieties), and may be endogenous neuromodulators. [18] [19] At millimolar concentrations, they may also modulate the redox state of the NMDA receptor complex. [19]
The N-methyl-D-aspartatereceptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and predominantly Ca2+ ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other two being AMPA and kainate receptors. Depending on its subunit composition, its ligands are glutamate and glycine (or D-serine). However, the binding of the ligands is typically not sufficient to open the channel as it may be blocked by Mg2+ ions which are only removed when the neuron is sufficiently depolarized. Thus, the channel acts as a "coincidence detector" and only once both of these conditions are met, the channel opens and it allows positively charged ions (cations) to flow through the cell membrane. The NMDA receptor is thought to be very important for controlling synaptic plasticity and mediating learning and memory functions.
Primary biliary cholangitis (PBC), previously known as primary biliary cirrhosis, is an autoimmune disease of the liver. It results from a slow, progressive destruction of the small bile ducts of the liver, causing bile and other toxins to build up in the liver, a condition called cholestasis. Further slow damage to the liver tissue can lead to scarring, fibrosis, and eventually cirrhosis.
Agmatine, also known as 4-aminobutyl-guanidine, was discovered in 1910 by Albrecht Kossel. It is a chemical substance which is naturally created from the amino acid arginine. Agmatine has been shown to exert modulatory action at multiple molecular targets, notably: neurotransmitter systems, ion channels, nitric oxide (NO) synthesis and polyamine metabolism and this provides bases for further research into potential applications.
Nitric oxide synthases (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS and nNOS. The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.
Ursodeoxycholic acid (UDCA), also known as ursodiol, is a secondary bile acid, produced in humans and most other species from metabolism by intestinal bacteria. It is synthesized in the liver in some species, and was first identified in bile of bears of genus Ursus, from which its name derived. In purified form, it has been used to treat or prevent several diseases of the liver or bile ducts.
Glutathione disulfide (GSSG) is a disulfide derived from two glutathione molecules.
Cholestasis is a condition where the flow of bile from the liver to the duodenum is impaired. The two basic distinctions are:
Bile acids are steroid acids found predominantly in the bile of mammals and other vertebrates. Diverse bile acids are synthesized in the liver. Bile acids are conjugated with taurine or glycine residues to give anions called bile salts.
Gasotransmitters is a class of neurotransmitters. The molecules are distinguished from other bioactive endogenous gaseous signaling molecules based on a need to meet distinct characterization criteria. Currently, only nitric oxide, carbon monoxide, and hydrogen sulfide are accepted as gasotransmitters. According to in vitro models, gasotransmitters, like other gaseous signaling molecules, may bind to gasoreceptors and trigger signaling in the cells.
The PDZ domain is a common structural domain of 80-90 amino-acids found in the signaling proteins of bacteria, yeast, plants, viruses and animals. Proteins containing PDZ domains play a key role in anchoring receptor proteins in the membrane to cytoskeletal components. Proteins with these domains help hold together and organize signaling complexes at cellular membranes. These domains play a key role in the formation and function of signal transduction complexes. PDZ domains also play a highly significant role in the anchoring of cell surface receptors to the actin cytoskeleton via mediators like NHERF and ezrin.
Nuclear factor erythroid 2-related factor 2 (NRF2), also known as nuclear factor erythroid-derived 2-like 2, is a transcription factor that in humans is encoded by the NFE2L2 gene. NRF2 is a basic leucine zipper (bZIP) protein that may regulate the expression of antioxidant proteins that protect against oxidative damage triggered by injury and inflammation, according to preliminary research. In vitro, NRF2 binds to antioxidant response elements (AREs) in the promoter regions of genes encoding cytoprotective proteins. NRF2 induces the expression of heme oxygenase 1 in vitro leading to an increase in phase II enzymes. NRF2 also inhibits the NLRP3 inflammasome.
In enzymology, a formaldehyde dehydrogenase (EC 1.2.1.46) is an enzyme that catalyzes the chemical reaction
Cystine/glutamate transporter is an antiporter that in humans is encoded by the SLC7A11 gene.
7-Nitroindazole, or 7-NI, is a heterocyclic small molecule containing an indazole ring that has been nitrated at the 7 position. Nitroindazole acts as a selective inhibitor for neuronal nitric oxide synthase, a hemoprotein enzyme that, in neuronal tissue, converts arginine to citrulline and nitric oxide (NO). Nitric oxide can diffuse through the plasma membrane into neighbouring cells, allowing cell signalling, so nitroindazole indirectly inhibits this signalling process. Other inhibitors exist such as 3-bromo-7-nitroindazole, which is more potent but less specific, or NPA (N-propyl-L-arginine), which acts on a different site.
In organic chemistry, S-nitrosothiols, also known as thionitrites, are organic compounds or functional groups containing a nitroso group attached to the sulfur atom of a thiol. S-Nitrosothiols have the general formula R−S−N=O, where R denotes an organic group. Originally suggested by Ignarro to serve as intermediates in the action of organic nitrates, endogenous S-nitrosothiols were discovered by Stamler and colleagues (S-nitrosoalbumin in plasma and S-nitrosoglutathione in airway lining fluid) and shown to represent a main source of NO bioactivity in vivo. More recently, S-nitrosothiols have been implicated as primary mediators of protein S-nitrosylation, the oxidative modification of cysteine thiol that provides ubiquitous regulation of protein function.
In biochemistry, S-nitrosylation is the covalent attachment of a nitric oxide group to a cysteine thiol within a protein to form an S-nitrosothiol (SNO). S-Nitrosylation has diverse regulatory roles in bacteria, yeast and plants and in all mammalian cells. It thus operates as a fundamental mechanism for cellular signaling across phylogeny and accounts for the large part of NO bioactivity.
Gaseous signaling molecules are gaseous molecules that are either synthesized internally (endogenously) in the organism, tissue or cell or are received by the organism, tissue or cell from outside and that are used to transmit chemical signals which induce certain physiological or biochemical changes in the organism, tissue or cell. The term is applied to, for example, oxygen, carbon dioxide, sulfur dioxide, nitrous oxide, hydrogen cyanide, ammonia, methane, hydrogen, ethylene, etc.
Hydrogen sulfide is produced in small amounts by some cells of the mammalian body and has a number of biological signaling functions. Only two other such gases are currently known: nitric oxide (NO) and carbon monoxide (CO).
Ted M. Dawson is an American neurologist and neuroscientist. He is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases and Director of the Institute for Cell Engineering at Johns Hopkins University School of Medicine. He has joint appointments in the Department of Neurology, Neuroscience and Department of Pharmacology and Molecular Sciences.
Jonathan Solomon Stamler is an English-born American physician and scientist. He is known for his discovery of protein S-nitrosylation, the addition of a nitric oxide (NO) group to cysteine residues in proteins, as a ubiquitous cellular signal to regulate enzymatic activity and other key protein functions in bacteria, plants and animals, and particularly in transporting NO on cysteines in hemoglobin as the third gas in the respiratory cycle.
for the synthesis of S-Nitrosoglutathione see Hart, T.W., 1985. Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of L-cysteine and glutathione. Tetrahedron Letters, 26(16), pp.2013-2016.