GRN-529

Last updated
GRN-529
GRN-529.svg
Identifiers
  • (4-(Difluoromethoxy)-3-(pyridin-2-ylethynyl)phenyl)(5H-pyrrolo[3,4-b]pyridin-6(7H)-yl)methanone
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
Chemical and physical data
Formula C22H15F2N3O2
Molar mass 391.378 g·mol−1
3D model (JSmol)
  • O=C(N1CC(C=CC=N2)=C2C1)C3=CC(C#CC4=CC=CC=N4)=C(OC(F)F)C=C3
  • InChI=1S/C22H15F2N3O2/c23-22(24)29-20-9-7-16(12-15(20)6-8-18-5-1-2-10-25-18)21(28)27-13-17-4-3-11-26-19(17)14-27/h1-5,7,9-12,22H,13-14H2
  • Key:JITMSIRHBAVREW-UHFFFAOYSA-N

GRN-529 is a drug that was developed by Wyeth as a negative allosteric modulator of the metabotropic glutamate receptor 5 (mGluR5). [1]

Contents

A study conducted by Pfizer found that GRN-529 reduced repetitive behaviors without sedation and partially increased sociability in mouse models of autism. [2]

Another study conducted by Pfizer found a therapeutically relevant effect in animal models of depression. It is theorized to work by reducing glutamate receptor hyperactivity. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Metabotropic glutamate receptor</span> Type of glutamate receptor

The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatory neurotransmitter.

<span class="mw-page-title-main">Glutamate receptor</span> Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

<span class="mw-page-title-main">Fenobam</span> Chemical compound

Fenobam is an imidazole derivative developed by McNeil Laboratories in the late 1970s as a novel anxiolytic drug with an at-the-time-unidentified molecular target in the brain. Subsequently, it was determined that fenobam acts as a potent and selective negative allosteric modulator of the metabotropic glutamate receptor subtype mGluR5, and it has been used as a lead compound for the development of a range of newer mGluR5 antagonists.

<span class="mw-page-title-main">Metabotropic glutamate receptor 1</span> Mammalian protein found in humans

The glutamate receptor, metabotropic 1, also known as GRM1, is a human gene which encodes the metabotropic glutamate receptor 1 (mGluR1) protein.

<span class="mw-page-title-main">Metabotropic glutamate receptor 2</span> Mammalian protein found in humans

Metabotropic glutamate receptor 2 (mGluR2) is a protein that, in humans, is encoded by the GRM2 gene. mGluR2 is a G protein-coupled receptor (GPCR) that couples with the Gi alpha subunit. The receptor functions as an autoreceptor for glutamate, that upon activation, inhibits the emptying of vesicular contents at the presynaptic terminal of glutamatergic neurons.

<span class="mw-page-title-main">Metabotropic glutamate receptor 4</span> Mammalian protein found in humans

Metabotropic glutamate receptor 4 is a protein that in humans is encoded by the GRM4 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 5</span> Mammalian protein found in humans

Metabotropic glutamate receptor 5 is an excitatory Gq-coupled G protein-coupled receptor predominantly expressed on the postsynaptic sites of neurons. In humans, it is encoded by the GRM5 gene.

<span class="mw-page-title-main">Cyclothiazide</span> Chemical compound

Cyclothiazide, sometimes abbreviated CTZ, is a benzothiadiazide (thiazide) diuretic and antihypertensive that was originally introduced in the United States in 1963 by Eli Lilly and was subsequently also marketed in Europe and Japan. Related drugs include diazoxide, hydrochlorothiazide, and chlorothiazide.

<span class="mw-page-title-main">2-Methyl-6-(phenylethynyl)pyridine</span> Chemical compound

2-Methyl-6-(phenylethynyl)pyridine (MPEP) is a research drug which was one of the first compounds found to act as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. After being originally patented as a liquid crystal for LCDs, it was developed by the pharmaceutical company Novartis in the late 1990s. It was found to produce neuroprotective effects following acute brain injury in animal studies, although it was unclear whether these results were purely from mGluR5 blockade as it also acts as a weak NMDA antagonist, and as a positive allosteric modulator of another subtype mGlu4, and there is also evidence for a functional interaction between mGluR5 and NMDA receptors in the same populations of neurons. It was also shown to produce antidepressant and anxiolytic effects in animals, and to reduce the effects of morphine withdrawal, most likely due to direct interaction between mGluR5 and the μ-opioid receptor.

<span class="mw-page-title-main">MTEP</span> Chemical compound

3-( ethynyl)pyridine (MTEP) is a research drug that was developed by Merck & Co. as a selective allosteric antagonist of the metabotropic glutamate receptor subtype mGluR5. Identified through structure-activity relationship studies on an older mGluR5 antagonist MPEP, MTEP has subsequently itself acted as a lead compound for newer and even more improved drugs.

<span class="mw-page-title-main">DMeOB</span> Chemical compound

DMeOB is a drug used in scientific research which acts as a negative allosteric modulator of the metabotropic glutamate receptor subtype mGluR5.

<span class="mw-page-title-main">ADX-47273</span> Chemical compound

ADX-47273 is a research pharmaceutical developed by Addex Therapeutics which acts as a positive allosteric modulator (PAM) selective for the metabotropic glutamate receptor subtype mGluR5. It has nootropic and antipsychotic effects in animal studies, and has been used as a lead compound to develop improved derivatives.

<span class="mw-page-title-main">SIB-1893</span> Chemical compound

SIB-1893 is a drug used in scientific research which was one of the first compounds developed that acts as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. It has anticonvulsant and neuroprotective effects, and reduces glutamate release. It has also been found to act as a positive allosteric modulator of mGluR4.

<span class="mw-page-title-main">CDPPB</span> Chemical compound

CDPPB is a drug used in scientific research which acts as a positive allosteric modulator selective for the metabotropic glutamate receptor subtype mGluR5. It has antipsychotic effects in animal models, and mGluR5 modulators are under investigation as potential drugs for the treatment of schizophrenia, as well as other applications.

<span class="mw-page-title-main">LY-487,379</span> Chemical compound

LY-487,379 is a drug used in scientific research that acts as a selective positive allosteric modulator for the metabotropic glutamate receptor group II subtype mGluR2. It is used to study the structure and function of this receptor subtype, and LY-487,379 along with various other mGluR2/3 agonists and positive modulators are being investigated as possible antipsychotic and anxiolytic drugs.

<span class="mw-page-title-main">Mavoglurant</span> Chemical compound

Mavoglurant (developmental code name AFQ-056) is an experimental drug candidate for the treatment of fragile X syndrome and other conditions which has been discontinued. It exerts its effect as an antagonist of the metabotropic glutamate receptor 5 (mGluR5).

<span class="mw-page-title-main">RO4491533</span> Chemical compound

RO-4491533 is a drug developed by Hoffmann-La Roche which acts as a potent and selective negative allosteric modulator for group II of the metabotropic glutamate receptors (mGluR2/3), being equipotent at mGluR2 and mGluR3 but without activity at other mGluR subtypes. In animal studies, RO-4491533 produced antidepressant effects and reversed the effects of the mGluR2/3 agonist LY-379,268 with similar efficacy but slightly lower potency than the mGluR2/3 antagonist LY-341,495. A number of related compounds are known, with similar effects in vitro and a fairly well characterized structure-activity relationship.

<span class="mw-page-title-main">CBiPES</span> Chemical compound

CBiPES is a drug used in scientific research that acts as a selective positive allosteric modulator for the metabotropic glutamate receptor group II subtype mGluR2. It has potentially antipsychotic effects in animal models, and is used for researching the role of mGluR2 receptors in schizophrenia and related disorders.

<span class="mw-page-title-main">MFZ 10-7</span> Chemical compound

MFZ 10-7 is a drug with potential applications in the treatment of addiction, which acts as a negative allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). Others of the kind, namely MPEP & MTEP, are not considered to have translational potential for human use due to off-target effects and short half-lives. Drugs of this kind have been used to offset craving for drugs of abuse such as cocaine in in vivo animal administration models.

<span class="mw-page-title-main">AZD9272</span> Medication

AZD 9272 is a drug which acts as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. It was unsuccessful in human trials as an analgesic, but continues to be widely used in research especially as its radiolabelled forms.

References

  1. US 2010273772,O'Neil SV, Zegarelli BJ, Springer DM, Li DZ,"Bisaryl Alkynylamides as Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5 (MGLUR5)",published 28 October 2010, assigned to Wyeth
  2. Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, et al. (April 2012). "Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism". Science Translational Medicine. 4 (131): 131ra51. doi:10.1126/scitranslmed.3003501. PMC   4904784 . PMID   22539775.
  3. Hughes ZA, Neal SJ, Smith DL, Sukoff Rizzo SJ, Pulicicchio CM, Lotarski S, et al. (March 2013). "Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression". Neuropharmacology. 66: 202–14. doi:10.1016/j.neuropharm.2012.04.007. PMID   22551786. S2CID   26417328.