CBiPES

Last updated
CBiPES
CBiPES Structure.svg
Clinical data
ATC code
  • none
Identifiers
  • N-(4'-cyano-[1,1'-biphenyl]-3-yl-N-(3-pyridinylmethyl)ethanesulfonamide
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H19N3O2S
Molar mass 377.46 g·mol−1
3D model (JSmol)
  • N#Cc1ccc(cc1)-c(ccc2)cc2N(S(=O)(=O)CC)Cc3cccnc3
  • InChI=1S/C21H19N3O2S/c1-2-27(25,26)24(16-18-5-4-12-23-15-18)21-7-3-6-20(13-21)19-10-8-17(14-22)9-11-19/h3-13,15H,2,16H2,1H3
  • Key:HDVYXILCBYGKGU-UHFFFAOYSA-N

CBiPES is a drug used in scientific research that acts as a selective positive allosteric modulator for the metabotropic glutamate receptor group II subtype mGluR2. It has potentially antipsychotic effects in animal models, and is used for researching the role of mGluR2 receptors in schizophrenia and related disorders. [1] [2] [3]

Related Research Articles

<span class="mw-page-title-main">Metabotropic glutamate receptor</span> Type of glutamate receptor

The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatory neurotransmitter.

<span class="mw-page-title-main">Metabotropic glutamate receptor 1</span> Mammalian protein found in humans

The glutamate receptor, metabotropic 1, also known as GRM1, is a human gene which encodes the metabotropic glutamate receptor 1 (mGluR1) protein.

<span class="mw-page-title-main">Metabotropic glutamate receptor 2</span> Mammalian protein found in humans

Metabotropic glutamate receptor 2 (mGluR2) is a protein that, in humans, is encoded by the GRM2 gene. mGluR2 is a G protein-coupled receptor (GPCR) that couples with the Gi alpha subunit. The receptor functions as an autoreceptor for glutamate, that upon activation, inhibits the emptying of vesicular contents at the presynaptic terminal of glutamatergic neurons.

<span class="mw-page-title-main">Metabotropic glutamate receptor 3</span> Mammalian protein found in humans

Metabotropic glutamate receptor 3 (mGluR3) is an inhibitory Gi/G0-coupled G-protein coupled receptor (GPCR) generally localized to presynaptic sites of neurons in classical circuits. However, in higher cortical circuits in primates, mGluR3 are localized post-synaptically, where they strengthen rather than weaken synaptic connectivity. In humans, mGluR3 is encoded by the GRM3 gene. Deficits in mGluR3 signaling have been linked to impaired cognition in humans, and to increased risk of schizophrenia, consistent with their expanding role in cortical evolution.

<span class="mw-page-title-main">Metabotropic glutamate receptor 7</span> Mammalian protein found in humans

Metabotropic glutamate receptor 7 is a protein that in humans is encoded by the GRM7 gene.

<span class="mw-page-title-main">Eglumetad</span> Chemical compound

Eglumetad is a research drug developed by Eli Lilly and Company, which is being investigated for its potential in the treatment of anxiety and drug addiction. It is a glutamate derived compound and its mode of action implies a novel mechanism.

<span class="mw-page-title-main">LY-341495</span> Chemical compound

LY-341495 is a research drug developed by the pharmaceutical company Eli Lilly, which acts as a potent and selective orthosteric antagonist for the group II metabotropic glutamate receptors (mGluR2/3).

<span class="mw-page-title-main">2-Methyl-6-(phenylethynyl)pyridine</span> Chemical compound

2-Methyl-6-(phenylethynyl)pyridine (MPEP) is a research drug which was one of the first compounds found to act as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. After being originally patented as a liquid crystal for LCDs, it was developed by the pharmaceutical company Novartis in the late 1990s. It was found to produce neuroprotective effects following acute brain injury in animal studies, although it was unclear whether these results were purely from mGluR5 blockade as it also acts as a weak NMDA antagonist, and as a positive allosteric modulator of another subtype mGlu4, and there is also evidence for a functional interaction between mGluR5 and NMDA receptors in the same populations of neurons. It was also shown to produce antidepressant and anxiolytic effects in animals, and to reduce the effects of morphine withdrawal, most likely due to direct interaction between mGluR5 and the μ-opioid receptor.

<span class="mw-page-title-main">MTEP</span> Chemical compound

3-( ethynyl)pyridine (MTEP) is a research drug that was developed by Merck & Co. as a selective allosteric antagonist of the metabotropic glutamate receptor subtype mGluR5. Identified through structure-activity relationship studies on an older mGluR5 antagonist MPEP, MTEP has subsequently itself acted as a lead compound for newer and even more improved drugs.

<span class="mw-page-title-main">EGLU</span> Chemical compound

EGLU is a drug that is used in neuroscience research. It was one of the first compounds found that acts as a selective antagonist for the group II metabotropic glutamate receptors (mGluR2/3), and so has been useful in the characterization and study of this receptor subfamily.

<span class="mw-page-title-main">Pomaglumetad</span> Drug, used as a treatment for schizophrenia

Pomaglumetad (LY-404,039) is an amino acid analog drug that acts as a highly selective agonist for the metabotropic glutamate receptor group II subtypes mGluR2 and mGluR3. Pharmacological research has focused on its potential antipsychotic and anxiolytic effects. Pomaglumetad is intended as a treatment for schizophrenia and other psychotic and anxiety disorders by modulating glutamatergic activity and reducing presynaptic release of glutamate at synapses in limbic and forebrain areas relevant to these disorders. Human studies investigating therapeutic use of pomaglumetad have focused on the prodrug LY-2140023, a methionine amide of pomaglumetad (also called pomaglumetad methionil) since pomaglumetad exhibits low oral absorption and bioavailability in humans.

<span class="mw-page-title-main">SIB-1757</span> Chemical compound

SIB-1757 is a drug used in scientific research which was one of the first compounds developed that acts as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. It has anti-hyperalgesia effects in animals. SIB-1757 along with other mGluR5 antagonists has been shown to have neuroprotective and hepatoprotective effects, and it is also used to study the role of the mGluR5 receptor in brain development.

<span class="mw-page-title-main">LY-379,268</span> Chemical compound

LY-379,268 is a drug that is used in neuroscience research, which acts as a potent and selective agonist for the group II metabotropic glutamate receptors (mGluR2/3).

<span class="mw-page-title-main">LY-487,379</span> Chemical compound

LY-487,379 is a drug used in scientific research that acts as a selective positive allosteric modulator for the metabotropic glutamate receptor group II subtype mGluR2. It is used to study the structure and function of this receptor subtype, and LY-487,379 along with various other mGluR2/3 agonists and positive modulators are being investigated as possible antipsychotic and anxiolytic drugs.

<span class="mw-page-title-main">PCCG-4</span> Chemical compound

PCCG-4 is a research drug which acts as a selective antagonist for the group II metabotropic glutamate receptors (mGluR2/3), with slight selectivity for mGluR2 although not sufficient to distinguish mGluR2 and mGluR3 responses from each other. It is used in research into the function of the group II metabotropic glutamate receptors.

<span class="mw-page-title-main">MGS-0039</span> Chemical compound

MGS-0039 is a drug that is used in neuroscientific research, which acts as a potent and selective antagonist for group II of the metabotropic glutamate receptors (mGluR2/3). It produces antidepressant and anxiolytic effects in animal studies, and has been shown to boost release of dopamine and serotonin in specific brain areas. Research has suggested this may occur through a similar mechanism as that suggested for the similarly glutamatergic drug ketamine.

<span class="mw-page-title-main">AZD9272</span> Medication

AZD 9272 is a drug which acts as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. It was unsuccessful in human trials as an analgesic, but continues to be widely used in research especially as its radiolabelled forms.

<span class="mw-page-title-main">AZ12216052</span> Chemical compound

AZ-12216052 is a drug which acts as a potent and selective positive allosteric modulator of the metabotropic glutamate receptor 8, and is used for research into the role of this receptor subtype in various processes including anxiety and neuropathic pain.

<span class="mw-page-title-main">XAP044</span> Chemical compound

XAP044 is a drug which acts as a potent and selective antagonist of the metabotropic glutamate receptor 7 (mGluR7). It inhibits long-term potentiation in the amygdala and inhibits responses associated with stress and anxiety in animal models, as well as being used to study the role of mGluR7 in various other processes.

<span class="mw-page-title-main">LSP2-9166</span> Chemical compound

LSP2-9166 is a drug which acts as a selective agonist for the group III metabotropic glutamate receptors, with a reasonably potent EC50 of 70nM at mGluR4 and 220nM at mGluR7, and weaker activity of 1380nM at mGluR6 and 4800nM at mGluR8. It has anticonvulsant effects in animal studies, and reduces self-administration of various addictive drugs.

References

  1. Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, et al. (April 2005). "Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s)". Psychopharmacology. 179 (1): 271–83. doi:10.1007/s00213-004-2099-9. PMID   15717213. S2CID   2699540.
  2. Fell MJ, Katner JS, Johnson BG, Khilevich A, Schkeryantz JM, Perry KW, Svensson KA (March 2010). "Activation of metabotropic glutamate (mGlu)2 receptors suppresses histamine release in limbic brain regions following acute ketamine challenge". Neuropharmacology. 58 (3): 632–9. doi:10.1016/j.neuropharm.2009.11.014. PMID   19951716. S2CID   7262560.
  3. Sanger H, Hanna L, Colvin EM, Grubisha O, Ursu D, Heinz BA, et al. (March 2013). "Pharmacological profiling of native group II metabotropic glutamate receptors in primary cortical neuronal cultures using a FLIPR". Neuropharmacology. 66: 264–73. doi:10.1016/j.neuropharm.2012.05.023. PMID   22659090. S2CID   42448364.