LY-487,379

Last updated
LY-487,379
LY-487,3793Dan.svg
Clinical data
ATC code
  • none
Identifiers
  • N-(4-(2-methoxyphenoxy)phenyl)- N-(2,2,2-trifluoroethylsulfonyl)pyrid- 3-ylmethylamine
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H19F3N2O4S
Molar mass 452.45 g·mol−1
3D model (JSmol)
  • c3ncccc3CN(S(=O)(=O)CC(F)(F)F)c2ccc(cc2)Oc1ccccc1OC
  • InChI=1S/C21H19F3N2O4S/c1-29-19-6-2-3-7-20(19)30-18-10-8-17(9-11-18)26(14-16-5-4-12-25-13-16)31(27,28)15-21(22,23)24/h2-13H,14-15H2,1H3 X mark.svgN
  • Key:ALMACYDZFBMGOR-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

LY-487,379 is a drug used in scientific research that acts as a selective positive allosteric modulator for the metabotropic glutamate receptor group II subtype mGluR2. [1] It is used to study the structure and function of this receptor subtype, [2] [3] and LY-487,379 along with various other mGluR2/3 agonists and positive modulators are being investigated as possible antipsychotic and anxiolytic drugs. [4] [5] [6] [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Metabotropic glutamate receptor</span> Type of glutamate receptor

The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatory neurotransmitter.

<span class="mw-page-title-main">Fenobam</span> Chemical compound

Fenobam is an imidazole derivative developed by McNeil Laboratories in the late 1970s as a novel anxiolytic drug with an at-the-time-unidentified molecular target in the brain. Subsequently, it was determined that fenobam acts as a potent and selective negative allosteric modulator of the metabotropic glutamate receptor subtype mGluR5, and it has been used as a lead compound for the development of a range of newer mGluR5 antagonists.

<span class="mw-page-title-main">Metabotropic glutamate receptor 2</span> Mammalian protein found in humans

Metabotropic glutamate receptor 2 (mGluR2) is a protein that, in humans, is encoded by the GRM2 gene. mGluR2 is a G protein-coupled receptor (GPCR) that couples with the Gi alpha subunit. The receptor functions as an autoreceptor for glutamate, that upon activation, inhibits the emptying of vesicular contents at the presynaptic terminal of glutamatergic neurons.

<span class="mw-page-title-main">Metabotropic glutamate receptor 3</span> Mammalian protein found in humans

Metabotropic glutamate receptor 3 (mGluR3) is an inhibitory Gi/G0-coupled G-protein coupled receptor (GPCR) generally localized to presynaptic sites of neurons in classical circuits. However, in higher cortical circuits in primates, mGluR3 are localized post-synaptically, where they strengthen rather than weaken synaptic connectivity. In humans, mGluR3 is encoded by the GRM3 gene. Deficits in mGluR3 signaling have been linked to impaired cognition in humans, and to increased risk of schizophrenia, consistent with their expanding role in cortical evolution.

<span class="mw-page-title-main">Metabotropic glutamate receptor 4</span> Mammalian protein found in humans

Metabotropic glutamate receptor 4 is a protein that in humans is encoded by the GRM4 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 5</span> Mammalian protein found in humans

Metabotropic glutamate receptor 5 is an excitatory Gq-coupled G protein-coupled receptor predominantly expressed on the postsynaptic sites of neurons. In humans, it is encoded by the GRM5 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 7</span> Mammalian protein found in humans

Metabotropic glutamate receptor 7 is a protein that in humans is encoded by the GRM7 gene.

<span class="mw-page-title-main">LY-341495</span> Chemical compound

LY-341495 is a research drug developed by the pharmaceutical company Eli Lilly, which acts as a potent and selective orthosteric antagonist for the group II metabotropic glutamate receptors (mGluR2/3).

<span class="mw-page-title-main">Biphenylindanone A</span> Chemical compound

Biphenylindanone A is a research agent which acts as a potent and selective positive allosteric modulator for the group II metabotropic glutamate receptor subtype mGluR2.

<span class="mw-page-title-main">MMPIP</span> Chemical compound

MMPIP is a drug used in scientific research that acts as a selective antagonist for the metabotropic glutamate receptor subtype mGluR7. This receptor subtype appears to be involved in the downstream response to cocaine in the brain.

<span class="mw-page-title-main">Pomaglumetad</span> Drug, used as a treatment for schizophrenia

Pomaglumetad (LY-404,039) is an amino acid analog drug that acts as a highly selective agonist for the metabotropic glutamate receptor group II subtypes mGluR2 and mGluR3. Pharmacological research has focused on its potential antipsychotic and anxiolytic effects. Pomaglumetad is intended as a treatment for schizophrenia and other psychotic and anxiety disorders by modulating glutamatergic activity and reducing presynaptic release of glutamate at synapses in limbic and forebrain areas relevant to these disorders. Human studies investigating therapeutic use of pomaglumetad have focused on the prodrug LY-2140023, a methionine amide of pomaglumetad (also called pomaglumetad methionil) since pomaglumetad exhibits low oral absorption and bioavailability in humans.

<span class="mw-page-title-main">ADX-47273</span> Chemical compound

ADX-47273 is a research pharmaceutical developed by Addex Therapeutics which acts as a positive allosteric modulator (PAM) selective for the metabotropic glutamate receptor subtype mGluR5. It has nootropic and antipsychotic effects in animal studies, and has been used as a lead compound to develop improved derivatives.

<span class="mw-page-title-main">SIB-1893</span> Chemical compound

SIB-1893 is a drug used in scientific research which was one of the first compounds developed that acts as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. It has anticonvulsant and neuroprotective effects, and reduces glutamate release. It has also been found to act as a positive allosteric modulator of mGluR4.

<span class="mw-page-title-main">CDPPB</span> Chemical compound

CDPPB is a drug used in scientific research which acts as a positive allosteric modulator selective for the metabotropic glutamate receptor subtype mGluR5. It has antipsychotic effects in animal models, and mGluR5 modulators are under investigation as potential drugs for the treatment of schizophrenia, as well as other applications.

<span class="mw-page-title-main">Ro01-6128</span> Chemical compound

Ro01-6128 is a drug used in scientific research, which acts as a selective positive allosteric modulator for the metabotropic glutamate receptor subtype mGluR1. It was derived by modification of a lead compound found via high-throughput screening, and was further developed to give the improved compound Ro67-4853.

<span class="mw-page-title-main">Ro67-4853</span> Chemical compound

Ro67-4853 is a drug used in scientific research, which acts as a selective positive allosteric modulator for the metabotropic glutamate receptor subtype mGluR1. It was derived by modification of the simpler compound Ro01-6128, and has itself subsequently been used as a lead compound to develop a range of potent and selective mGluR1 positive modulators.

<span class="mw-page-title-main">LY-379,268</span> Chemical compound

LY-379,268 is a drug that is used in neuroscience research, which acts as a potent and selective agonist for the group II metabotropic glutamate receptors (mGluR2/3).

<span class="mw-page-title-main">RO4491533</span> Chemical compound

RO-4491533 is a drug developed by Hoffmann-La Roche which acts as a potent and selective negative allosteric modulator for group II of the metabotropic glutamate receptors (mGluR2/3), being equipotent at mGluR2 and mGluR3 but without activity at other mGluR subtypes. In animal studies, RO-4491533 produced antidepressant effects and reversed the effects of the mGluR2/3 agonist LY-379,268 with similar efficacy but slightly lower potency than the mGluR2/3 antagonist LY-341,495. A number of related compounds are known, with similar effects in vitro and a fairly well characterized structure-activity relationship.

<span class="mw-page-title-main">CBiPES</span> Chemical compound

CBiPES is a drug used in scientific research that acts as a selective positive allosteric modulator for the metabotropic glutamate receptor group II subtype mGluR2. It has potentially antipsychotic effects in animal models, and is used for researching the role of mGluR2 receptors in schizophrenia and related disorders.

ADX-71149, also known as JNJ-40411813 and JNJ-mGluR2-PAM, is a selective positive allosteric modulator of the mGlu2 receptor. It is being studied by Addex Therapeutics and Janssen Pharmaceuticals for the treatment of schizophrenia. It was also researched by these companies for the treatment of anxious depression, but although some efficacy was observed in clinical trials, it was not enough to warrant further development for this indication. As of 2015, ADX-71149 is in phase II clinical trials for schizophrenia.

References

  1. Johnson MP, Baez M, Jagdmann GE, Britton TC, Large TH, Callagaro DO, et al. (July 2003). "Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2- trifluoroethylsulfonyl)pyrid-3-ylmethylamine". Journal of Medicinal Chemistry. 46 (15): 3189–92. doi:10.1021/jm034015u. PMID   12852748.
  2. Schaffhauser H, Rowe BA, Morales S, Chavez-Noriega LE, Yin R, Jachec C, et al. (October 2003). "Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2". Molecular Pharmacology. 64 (4): 798–810. doi:10.1124/mol.64.4.798. PMID   14500736. S2CID   15919973.
  3. Poisik O, Raju DV, Verreault M, Rodriguez A, Abeniyi OA, Conn PJ, Smith Y (2005). "Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus". Neuropharmacology. 49 (Suppl 1): 57–69. doi:10.1016/j.neuropharm.2005.03.006. PMID   15993439. S2CID   21881395.
  4. Galici R, Echemendia NG, Rodriguez AL, Conn PJ (December 2005). "A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity" (PDF). The Journal of Pharmacology and Experimental Therapeutics. 315 (3): 1181–1187. doi:10.1124/jpet.105.091074. PMID   16123306. S2CID   9159875. Archived from the original (PDF) on 2019-02-21.
  5. Marino MJ, Conn PJ (February 2006). "Glutamate-based therapeutic approaches: allosteric modulators of metabotropic glutamate receptors". Current Opinion in Pharmacology. 6 (1): 98–102. doi:10.1016/j.coph.2005.09.006. PMID   16368268.
  6. Harich S, Gross G, Bespalov A (July 2007). "Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment". Psychopharmacology. 192 (4): 511–9. doi:10.1007/s00213-007-0742-y. PMID   17318501. S2CID   7551116.
  7. Conn PJ, Jones CK (January 2009). "Promise of mGluR2/3 activators in psychiatry". Neuropsychopharmacology. 34 (1): 248–9. doi:10.1038/npp.2008.156. PMC   2907744 . PMID   19079073.
  8. Hermes ML, Renaud LP (March 2011). "Postsynaptic and presynaptic group II metabotropic glutamate receptor activation reduces neuronal excitability in rat midline paraventricular thalamic nucleus" (PDF). The Journal of Pharmacology and Experimental Therapeutics. 336 (3): 840–9. doi:10.1124/jpet.110.176149. PMID   21139059. S2CID   25111011. Archived from the original (PDF) on 2019-02-22.