Acetylcarnitine

Last updated
Acetylcarnitine
Acetylcarnitine.svg
Clinical data
AHFS/Drugs.com International Drug Names
Routes of
administration
Oral
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability >10%
Elimination half-life 28.9 - 35.9 hours [1]
Identifiers
  • (R)-3-Acetyloxy-4-trimethylammonio-butanoate
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.130.594 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C9H17NO4
Molar mass 203.238 g·mol−1
3D model (JSmol)
  • [O-]C(=O)C[C@@H](OC(=O)C)C[N+](C)(C)C
  • InChI=1S/C9H17NO4/c1-7(11)14-8(5-9(12)13)6-10(2,3)4/h8H,5-6H2,1-4H3/t8-/m1/s1 Yes check.svgY
  • Key:RDHQFKQIGNGIED-MRVPVSSYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Acetyl-L-carnitine, ALCAR or ALC, is an acetylated form of L-carnitine. It is naturally produced by the human body, and it is available as a dietary supplement. Acetylcarnitine is broken down in the blood by plasma esterases to carnitine which is used by the body to transport fatty acids into the mitochondria for breakdown.

Contents

Biochemical production and action

Carnitine is both a nutrient and made by the body as needed; it serves as a substrate for important reactions in which it accepts and gives up an acyl group. Acetylcarnitine is the most abundant naturally occurring derivative and is formed in the reaction:

acetyl-CoA + carnitine CoA + acetylcarnitine

where the acetyl group displaces the hydrogen atom in the central hydroxyl group of carnitine. [2] [3] Coenzyme A (CoA) plays a key role in the Krebs cycle in mitochondria, which is essential for the production of ATP, which powers many reactions in cells; acetyl-CoA is the primary substrate for the Krebs cycle, once it is de-acetylated, it must be re-charged with an acetyl-group in order for the Krebs cycle to keep working. [3]

Most cell types appear to have transporters to import carnitine and export acyl-carnitines, which seems to be a mechanism to dispose of longer-chain moieties; however many cell types can also import ALCAR. [2]

Within cells, carnitine plays a key role in importing acyl-CoA into mitochondria; the acyl-group of the acyl-CoA is transferred to carnitine, and the acyl-carnitine is imported through both mitochondrial membranes before being transferred to a CoA molecule, which is then beta oxidized to acetyl-CoA. A separate set of enzymes and transporters also plays a buffering role by eliminating acetyl-CoA from inside mitochondria created by the pyruvate dehydrogenase complex that is in excess of its utilization by the Krebs cycle; carnitine accepts the acetyl moiety and becomes ALCAR, which is then transported out of the mitochondria and into the cytosol, leaving free CoA inside the mitochondria ready to accept new import of fatty acid chains. [3] ALCAR in the cytosol can also form a pool of acetyl-groups for CoA, should the cell need it. [3]

Excess acetyl-CoA causes more carbohydrates to be used for energy at the expense of fatty acids. This occurs by different mechanisms inside and outside the mitochondria. ALCAR transport decreases acetyl-CoA inside the mitochondria, but increases it outside. [4] [5]

Health effects

Carnitine and ALCAR supplements carry warnings of a risk that they promote seizures in people with epilepsy, but a 2016 review found this risk to be based only on animal trials. [6]

Research

Reviews

Studies

Related Research Articles

<span class="mw-page-title-main">Leucine</span> Chemical compound

Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG.

<span class="mw-page-title-main">Acetyl-CoA</span> Chemical compound

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production. Coenzyme A consists of a β-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3'-phosphorylated ADP. The acetyl group of acetyl-CoA is linked to the sulfhydryl substituent of the β-mercaptoethylamine group. This thioester linkage is a "high energy" bond, which is particularly reactive. Hydrolysis of the thioester bond is exergonic (−31.5 kJ/mol).

<span class="mw-page-title-main">Carnitine</span> Amino acid active in mitochondria

Carnitine is a quaternary ammonium compound involved in metabolism in most mammals, plants, and some bacteria. In support of energy metabolism, carnitine transports long-chain fatty acids from the cytosol into mitochondria to be oxidized for free energy production, and also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in tissues like skeletal and cardiac muscle that metabolize fatty acids as an energy source. Generally individuals, including strict vegetarians, synthesize enough L-carnitine in vivo.

<span class="mw-page-title-main">Ketogenesis</span> Chemical breakdown of ketone bodies

Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, under specific scenarios including fasting, caloric restriction, sleep, or others.

<span class="mw-page-title-main">Duloxetine</span> Antidepressant medication used also for treatment of anxiety and chronic pain

Duloxetine, sold under the brand name Cymbalta among others, is a medication used to treat major depressive disorder, generalized anxiety disorder, fibromyalgia, neuropathic pain and central sensitization. It is taken by mouth.

<span class="mw-page-title-main">Peripheral neuropathy</span> Nervous system disease affecting nerves beyond the brain and spinal cord

Peripheral neuropathy, often shortened to neuropathy, is a general term describing damage or disease affecting the nerves. Damage to nerves may impair sensation, movement, gland function, and/or organ function depending on which nerves are affected. Neuropathy affecting motor, sensory, or autonomic nerves result in different symptoms. More than one type of nerve may be affected simultaneously. Peripheral neuropathy may be acute or chronic, and may be reversible or permanent.

Neuropathic pain is pain caused by a lesion or disease of the somatosensory nervous system. Neuropathic pain may be associated with abnormal sensations called dysesthesia or pain from normally non-painful stimuli (allodynia). It may have continuous and/or episodic (paroxysmal) components. The latter resemble stabbings or electric shocks. Common qualities include burning or coldness, "pins and needles" sensations, numbness and itching.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

<span class="mw-page-title-main">Beta oxidation</span> Process of fatty acid breakdown

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid cycle, and NADH and FADH2, which are co-enzymes used in the electron transport chain. It is named as such because the beta carbon of the fatty acid undergoes oxidation to a carbonyl group. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Acetyl-CoA carboxylase</span> Enzyme that regulates the metabolism of fatty acids

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is a multi-subunit enzyme in most prokaryotes and in the chloroplasts of most plants and algae, whereas it is a large, multi-domain enzyme in the cytoplasm of most eukaryotes. The most important function of ACC is to provide the malonyl-CoA substrate for the biosynthesis of fatty acids. The activity of ACC can be controlled at the transcriptional level as well as by small molecule modulators and covalent modification. The human genome contains the genes for two different ACCs—ACACA and ACACB.

<span class="mw-page-title-main">Malonyl-CoA</span> Chemical compound

Malonyl-CoA is a coenzyme A derivative of malonic acid.

β-Hydroxybutyric acid Chemical compound

β-Hydroxybutyric acid, also known as 3-hydroxybutyric acid or BHB, is an organic compound and a beta hydroxy acid with the chemical formula CH3CH(OH)CH2CO2H; its conjugate base is β-hydroxybutyrate, also known as 3-hydroxybutyrate. β-Hydroxybutyric acid is a chiral compound with two enantiomers: D-β-hydroxybutyric acid and L-β-hydroxybutyric acid. Its oxidized and polymeric derivatives occur widely in nature. In humans, D-β-hydroxybutyric acid is one of two primary endogenous agonists of hydroxycarboxylic acid receptor 2 (HCA2), a Gi/o-coupled G protein-coupled receptor (GPCR).

<span class="mw-page-title-main">Acyl-CoA</span> Group of coenzymes that metabolize fatty acids

Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the universal biochemical energy carrier.

Palmitoyl-CoA is an acyl-CoA thioester. It is an "activated" form of palmitic acid and can be transported into the mitochondrial matrix by the carnitine shuttle system, and once inside can participate in beta-oxidation. Alternatively, palmitoyl-CoA is used as a substrate in the biosynthesis of sphingosine.

<span class="mw-page-title-main">Carnitine palmitoyltransferase I</span> Protein-coding gene in the species Homo sapiens

Carnitine palmitoyltransferase I (CPT1) also known as carnitine acyltransferase I, CPTI, CAT1, CoA:carnitine acyl transferase (CCAT), or palmitoylCoA transferase I, is a mitochondrial enzyme responsible for the formation of acyl carnitines by catalyzing the transfer of the acyl group of a long-chain fatty acyl-CoA from coenzyme A to l-carnitine. The product is often Palmitoylcarnitine, but other fatty acids may also be substrates. It is part of a family of enzymes called carnitine acyltransferases. This "preparation" allows for subsequent movement of the acyl carnitine from the cytosol into the intermembrane space of mitochondria.

<span class="mw-page-title-main">Carnitine O-acetyltransferase</span> Enzyme

Carnitine O-acetyltransferase also called carnitine acetyltransferase is an enzyme that encoded by the CRAT gene that catalyzes the chemical reaction

<span class="mw-page-title-main">Carnitine O-octanoyltransferase</span>

Carnitine O-octanoyltransferase is a member of the transferase family, more specifically a carnitine acyltransferase, a type of enzyme which catalyzes the transfer of acyl groups from acyl-CoAs to carnitine, generating CoA and an acyl-carnitine. The systematic name of this enzyme is octanoyl-CoA:L-carnitine O-octanoyltransferase. Other names in common use include medium-chain/long-chain carnitine acyltransferase, carnitine medium-chain acyltransferase, easily solubilized mitochondrial carnitine palmitoyltransferase, and overt mitochondrial carnitine palmitoyltransferase. Specifically, CROT catalyzes the chemical reaction:

Management of depression is the treatment of depression that may involve a number of different therapies: medications, behavior therapy, psychotherapy, and medical devices.

Etomoxir, or 2[6(4-chlorophenoxy)hexyl]oxirane-2-carboxylate, is an irreversible inhibitor of carnitine palmitoyltransferase-1 (CPT-1) on the inner face of the outer mitochondrial membrane. This prevents the formation of acyl carnitines, a step that is necessary for the transport of fatty acyl chains from the cytosol into the intermembrane space of the mitochondria. This step is essential to the production of ATP from fatty acid oxidation. Etomoxir has also been identified as a direct agonist of PPARα. An off-target effect has been demonstrated at high concentrations of etomoxir on Coenzyme-A (CoA) metabolism.

<i>beta</i>-Hydroxy <i>beta</i>-methylbutyryl-CoA Chemical compound

β-Hydroxy β-methylbutyryl-coenzyme A (HMB-CoA), also known as 3-hydroxyisovaleryl-CoA, is a metabolite of L-leucine that is produced in the human body. Its immediate precursors are β-hydroxy β-methylbutyric acid (HMB) and β-methylcrotonoyl-CoA (MC-CoA). It can be metabolized into HMB, MC-CoA, and HMG-CoA in humans.

References

  1. Cao Y, Wang YX, Liu CJ, Wang LX, Han ZW, Wang CB (February 2009). "Comparison of pharmacokinetics of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine after single oral administration of L-carnitine in healthy volunteers". Clinical and Investigative Medicine. 32 (1): E13–E19. doi: 10.25011/cim.v32i1.5082 . PMID   19178874.
  2. 1 2 Bieber LL (1988). "Carnitine". Annual Review of Biochemistry. 57: 261–283. doi:10.1146/annurev.bi.57.070188.001401. PMID   3052273.
  3. 1 2 3 4 5 Stephens FB, Constantin-Teodosiu D, Greenhaff PL (June 2007). "New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle". The Journal of Physiology. 581 (Pt 2): 431–444. doi:10.1113/jphysiol.2006.125799. PMC   2075186 . PMID   17331998.
  4. Kiens B (January 2006). "Skeletal muscle lipid metabolism in exercise and insulin resistance". Physiological Reviews. 86 (1): 205–243. doi:10.1152/physrev.00023.2004. PMID   16371598.
  5. Lopaschuk GD, Gamble J (October 1994). "The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart". Canadian Journal of Physiology and Pharmacology. 72 (10): 1101–1109. doi:10.1139/y94-156. PMID   7882173.
  6. Zeiler FA, Sader N, Gillman LM, West M (March 2016). "Levocarnitine induced seizures in patients on valproic acid: A negative systematic review". Seizure. 36: 36–39. doi: 10.1016/j.seizure.2016.01.020 . PMID   26889779.
  7. Li S, Li Q, Li Y, Li L, Tian H, Sun X (2015-01-01). "Acetyl-L-carnitine in the treatment of peripheral neuropathic pain: a systematic review and meta-analysis of randomized controlled trials". PLOS ONE. 10 (3): e0119479. Bibcode:2015PLoSO..1019479L. doi: 10.1371/journal.pone.0119479 . PMC   4353712 . PMID   25751285.
  8. Veronese N (2017). "Effect of acetyl-l-carnitine in the treatment of diabetic peripheral neuropathy: A systematic review and meta-analysis". European Geriatric Medicine. 8 (2): 117–122. doi:10.1016/j.eurger.2017.01.002. hdl: 10138/235591 . S2CID   56342481.
  9. Rolim LC, da Silva EM, Flumignan RL, Abreu MM, Dib SA (June 2019). "Acetyl-L-carnitine for the treatment of diabetic peripheral neuropathy". The Cochrane Database of Systematic Reviews. 2019 (6): CD011265. doi:10.1002/14651858.CD011265.pub2. PMC   6953387 . PMID   31201734.
  10. Schloss JM, Colosimo M, Airey C, Masci PP, Linnane AW, Vitetta L (December 2013). "Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): a systematic review". Clinical Nutrition. 32 (6): 888–893. doi:10.1016/j.clnu.2013.04.007. PMID   23647723.
  11. Brami C, Bao T, Deng G (February 2016). "Natural products and complementary therapies for chemotherapy-induced peripheral neuropathy: A systematic review". Critical Reviews in Oncology/Hematology. 98: 325–334. doi:10.1016/j.critrevonc.2015.11.014. PMC   4727999 . PMID   26652982.
  12. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A (December 2016). "Antioxidant supplements and semen parameters: An evidence based review". International Journal of Reproductive Biomedicine. 14 (12): 729–736. doi:10.29252/ijrm.14.12.729. PMC   5203687 . PMID   28066832.
  13. Arcaniolo D, Favilla V, Tiscione D, Pisano F, Bozzini G, Creta M, et al. (September 2014). "Is there a place for nutritional supplements in the treatment of idiopathic male infertility?". Archivio Italiano di Urologia, Andrologia. 86 (3): 164–170. doi: 10.4081/aiua.2014.3.164 . PMID   25308577.
  14. Hudson S, Tabet N (2003). "Acetyl-L-carnitine for dementia". The Cochrane Database of Systematic Reviews (Systematic review). 2003 (2): CD003158. doi:10.1002/14651858.CD003158. PMC   6991156 . PMID   12804452.
  15. Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU (June 2014). "A review of current evidence for acetyl-l-carnitine in the treatment of depression". Journal of Psychiatric Research. 53: 30–37. doi:10.1016/j.jpsychires.2014.02.005. PMID   24607292.
  16. Kriston L, von Wolff A, Westphal A, Hölzel LP, Härter M (August 2014). "Efficacy and acceptability of acute treatments for persistent depressive disorder: a network meta-analysis". Depression and Anxiety. 31 (8): 621–630. doi: 10.1002/da.22236 . PMID   24448972. S2CID   41163109.
  17. Veronese N, Stubbs B, Solmi M, Ajnakina O, Carvalho AF, Maggi S (Feb–Mar 2018). "Acetyl-L-Carnitine Supplementation and the Treatment of Depressive Symptoms: A Systematic Review and Meta-Analysis". Psychosomatic Medicine. 80 (2): 154–159. doi:10.1097/PSY.0000000000000537. PMID   29076953. S2CID   7649619.
  18. Rueda JR, Guillén V, Ballesteros J, Tejada MI, Solà I (May 2015). "L-acetylcarnitine for treating fragile X syndrome". The Cochrane Database of Systematic Reviews. 19 (5): CD010012. doi:10.1002/14651858.CD010012.pub2. PMID   25985235.
  19. Jawaro T, Yang A, Dixit D, Bridgeman MB (July 2016). "Management of Hepatic Encephalopathy: A Primer". The Annals of Pharmacotherapy. 50 (7): 569–577. doi:10.1177/1060028016645826. PMC   1503997 . PMID   27126547. S2CID   32765158.
  20. 1 2 Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, et al. (February 2002). "Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R -α-lipoic acid". Proceedings of the National Academy of Sciences of the United States of America. 99 (4): 2356–2361. doi: 10.1073/pnas.261709299 . PMC   122369 . PMID   11854529.

Other reviews