Antioxidant effect of polyphenols and natural phenols

Last updated
Blackberries are a source of polyphenols. Blackberry fruits10.jpg
Blackberries are a source of polyphenols.

A polyphenol antioxidant is a hypothesized type of antioxidant studied in vitro. Numbering over 4,000 distinct chemical structures mostly from plants, such polyphenols have not been demonstrated to be antioxidants in vivo. [1] [2] [3]

Contents

In vitro at high experimental doses, polyphenols may affect cell-to-cell signaling, receptor sensitivity, inflammatory enzyme activity or gene regulation. [3] [4] None of these hypothetical effects has been confirmed in humans by high-quality clinical research, as of 2020. [1]

Sources of polyphenols

The main source of polyphenols is dietary, since they are found in a wide array of phytochemical-bearing foods. For example, honey; most legumes; fruits such as apples, blackberries, blueberries, cantaloupe, pomegranate, cherries, cranberries, grapes, pears, plums, raspberries, aronia berries, and strawberries (berries in general have high polyphenol content [5] ) and vegetables such as broccoli, cabbage, celery, onion and parsley are rich in polyphenols. Red wine, chocolate, black tea, white tea, green tea, olive oil and many grains are sources. [1] Ingestion of polyphenols occurs by consuming a wide array of plant foods. [1]

Biochemical theory

The regulation theory considers a polyphenolic ability to scavenge free radicals and up-regulate certain metal chelation reactions. [1] Various reactive oxygen species, such as singlet oxygen, peroxynitrite and hydrogen peroxide, must be continually removed from cells to maintain healthy metabolic function. Diminishing the concentrations of reactive oxygen species can have several benefits possibly associated with ion transport systems and so may affect redox signaling. [1] There is no substantial evidence, however, that dietary polyphenols have an antioxidant effect in vivo. [1] [6]

The “deactivation” of oxidant species by polyphenolic antioxidants (POH) is based, with regard to food systems that are deteriorated by peroxyl radicals (R•), on the donation of hydrogen, which interrupts chain reactions:

R• + PhOH → R-H + PhO•

Phenoxyl radicals (PO•) generated according to this reaction may be stabilized through resonance and/or intramolecular hydrogen bonding, as proposed for quercetin, or combine to yield dimerisation products, thus terminating the chain reaction:

PhO• + PhO•→ PhO-OPh [7]

Potential biological consequences

A macrophage stretching its arms to engulf two particles. Reactive oxygen species promote oxidized LDL. Macrophage.jpg
A macrophage stretching its arms to engulf two particles. Reactive oxygen species promote oxidized LDL.

Consuming dietary polyphenols have been evaluated for biological activity in vitro, but there is no evidence from high-quality clinical research as of 2015 that they have effects in vivo. [1] Preliminary research has been conducted and regulatory status was reviewed in 2009 by the U.S. Food and Drug Administration (FDA), with no recommended intake values established, indicating absence of proof for nutritional value. [6] Other possible effects may result from consumption of foods rich in polyphenols, but are not yet proved scientifically in humans; accordingly, health claims on food labels are not allowed by the FDA. [6]

Difficulty in analyzing effects of specific chemicals

Grapes contain certain polyphenol compounds, although none has been shown to be an antioxidant in vivo. Close up grapes.jpg
Grapes contain certain polyphenol compounds, although none has been shown to be an antioxidant in vivo.

It is difficult to evaluate the physiological effects of specific natural phenolic antioxidants, since such a large number of individual compounds may occur even in a single food and their fate in vivo cannot be measured. [1] [6] [8]

Other more detailed chemical research has elucidated the difficulty of isolating individual phenolics. Because significant variation in phenolic content occurs among various brands of tea, there are possible [9] inconsistencies among epidemiological studies implying beneficial health effects of phenolic antioxidants of green tea blends. The Oxygen Radical Absorbance Capacity (ORAC) test is a laboratory indicator of antioxidant potential in foods and dietary supplements. However, ORAC results cannot be confirmed to be physiologically applicable and have been designated as unreliable. [3] [10]

Practical aspects of dietary polyphenols

Cocoa is the prime ingredient of chocolate, a source of polyphenols. Cacao-pod-k4636-14.jpg
Cocoa is the prime ingredient of chocolate, a source of polyphenols.

There is debate regarding the total body absorption of dietary intake of polyphenolic compounds. While some indicate potential health effects of certain specific polyphenols, most studies demonstrate low bioavailability and rapid excretion of polyphenols, indicating their potential roles only in small concentrations in vivo. [1] [2] [3] [4] More research is needed to understand the interactions between a variety of these chemicals acting in concert within the human body. [1]

Topical application of polyphenols

There is no substantial evidence that reactive oxygen species play a role in the process of skin aging. [11] The skin is exposed to various exogenous sources of oxidative stress, including ultraviolet radiation whose spectral components may be responsible for the extrinsic type of skin aging, sometimes termed photoaging. Controlled long-term studies on the efficacy of low molecular weight antioxidants in the prevention or treatment of skin aging in humans are absent.

Combination of antioxidants in vitro

Experiments on linoleic acid subjected to 2,2′-azobis (2-amidinopropane) dihydrochloride-induced oxidation with different combinations of phenolics show that binary mixtures can lead to either a synergetic effect or to an antagonistic effect. [12]

Antioxidant levels of purified anthocyanin extracts were much higher than expected from anthocyanin content indicating synergistic effect of anthocyanin mixtures. [13]

Antioxidant capacity tests

See also

Related Research Articles

Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. Autoxidation leads to degradation of organic compounds, including living matter. Antioxidants are frequently added to industrial products, such as polymers, fuels, and lubricants, to extend their usable lifetimes. Foods are also treated with antioxidants to forestall spoilage, in particular the rancidification of oils and fats. In cells, antioxidants such as glutathione, mycothiol, or bacillithiol, and enzyme systems like superoxide dismutase, can prevent damage from oxidative stress.

<span class="mw-page-title-main">Flavonoid</span> Class of plant and fungus secondary metabolites

Flavonoids are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include phenolic acids, flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Phytochemical</span> Chemical compounds produced by plants

Phytochemicals are chemical compounds produced by plants, generally to help them resist fungi, bacteria and plant virus infections, and also consumption by insects and other animals. The name comes from Greek φυτόν (phyton) 'plant'. Some phytochemicals have been used as poisons and others as traditional medicine.

<span class="mw-page-title-main">Catechin</span> Type of natural phenol as a plant secondary metabolite

Catechin is a flavan-3-ol, a type of secondary metabolite providing antioxidant roles in plants. It belongs to the subgroup of polyphenols called flavonoids.

<span class="mw-page-title-main">Açaí palm</span> Palm tree with many uses, mainly fruit as cash crop

The açaí palm, Euterpe oleracea, is a species of palm tree (Arecaceae) cultivated for its fruit, hearts of palm, leaves, and trunk wood. Global demand for the fruit has expanded rapidly in the 21st century, and the tree is cultivated for that purpose primarily.

<span class="mw-page-title-main">Caffeic acid</span> Chemical compound

Caffeic acid is an organic compound with the formula (HO)2C6H3CH=CHCO2H. It is a polyphenol. It is a yellow solid. Structurally, it is classified as a hydroxycinnamic acid. The molecule consists of both phenolic and acrylic functional groups. It is found in all plants as an intermediate in the biosynthesis of lignin, one of the principal components of biomass and its residues. It is unrelated to caffeine.

Oxygen radical absorbance capacity (ORAC) was a method of measuring antioxidant capacities in biological samples in vitro. Because no physiological proof in vivo existed in support of the free-radical theory or that ORAC provided information relevant to biological antioxidant potential, it was withdrawn in 2012.

Proanthocyanidins are a class of polyphenols found in many plants, such as cranberry, blueberry, and grape seeds. Chemically, they are oligomeric flavonoids. Many are oligomers of catechin and epicatechin and their gallic acid esters. More complex polyphenols, having the same polymeric building block, form the group of condensed tannins.

<span class="mw-page-title-main">Myricetin</span> Chemical compound

Myricetin is a member of the flavonoid class of polyphenolic compounds, with antioxidant properties. Common dietary sources include vegetables, fruits, nuts, berries, tea, and red wine.

<span class="mw-page-title-main">Procyanidin</span>

Procyanidins are members of the proanthocyanidin class of flavonoids. They are oligomeric compounds, formed from catechin and epicatechin molecules. They yield cyanidin when depolymerized under oxidative conditions.

<span class="mw-page-title-main">Folin–Ciocalteu reagent</span> Chemical mixture

The Folin–Ciocâlteu reagent (FCR) or Folin's phenol reagent or Folin–Denis reagent, is a mixture of phosphomolybdate and phosphotungstate used for the colorimetric in vitro assay of phenolic and polyphenolic antioxidants, also called the gallic acid equivalence method (GAE). It is named after Otto Folin, Vintilă Ciocâlteu, and Willey Glover Denis. The Folin-Denis reagent is prepared by mixing sodium tungstate and phosphomolybdic acid in phosphoric acid. The Folin–Ciocalteu reagent is just a modification of the Folin-Denis reagent. The modification consisted of the addition of lithium sulfate and bromine to the phosphotungstic-phosphomolybdic reagent.

<span class="mw-page-title-main">Anthocyanin</span> Class of plant-based pigments

Anthocyanins, also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart named a chemical compound that gives flowers a blue color, Anthokyan, in his treatise "Die Farben der Blüthen". Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

Phenolic compounds—natural phenol and polyphenols—occur naturally in wine. These include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

A type proanthocyanidins are a specific type of proanthocyanidins, which are a class of flavonoid. Proanthocyanidins fall under a wide range of names in the nutritional and scientific vernacular, including oligomeric proanthocyanidins, flavonoids, polyphenols, condensed tannins, and OPCs. Proanthocyanidins were first popularized by French scientist Jacques Masquelier.

<span class="mw-page-title-main">Phenolic content in tea</span> Natural plant compounds

The phenolic content in tea refers to the phenols and polyphenols, natural plant compounds which are found in tea. These chemical compounds affect the flavor and mouthfeel of tea. Polyphenols in tea include catechins, theaflavins, tannins, and flavonoids.

<span class="mw-page-title-main">Naturally occurring phenols</span> Group of chemical compounds

In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.

<span class="mw-page-title-main">2,2'-Azobis(2-amidinopropane) dihydrochloride</span> Chemical compound

2,2'-Azobis(2-amidinopropane) dihydrochloride is a chemical compound used to study the chemistry of the oxidation of drugs.

Antioxidative stress is an overabundance of bioavailable antioxidant compounds that interfere with the immune system's ability to neutralize pathogenic threats. The fundamental opposite is oxidative stress, which can lead to such disease states as coronary heart disease or cancer.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 "Flavonoids". Corvallis, OR: Micronutrient Information Center, Linus Pauling Institute, Oregon State University. November 2015. Retrieved 31 January 2018.
  2. 1 2 Williams RJ, Spencer JP, Rice-Evans C (April 2004). "Flavonoids: antioxidants or signalling molecules?". Free Radical Biology & Medicine. 36 (7): 838–49. doi:10.1016/j.freeradbiomed.2004.01.001. PMID   15019969.
  3. 1 2 3 4 Frei B (April 1, 2009). "Controversy: What are the true biological functions of superfruit antioxidants?". Natural Products Information Center. Archived from the original on March 6, 2010.
  4. 1 2 Virgili F, Marino M (November 2008). "Regulation of cellular signals from nutritional molecules: a specific role for phytochemicals, beyond antioxidant activity". Free Radical Biology & Medicine. 45 (9): 1205–16. doi:10.1016/j.freeradbiomed.2008.08.001. PMID   18762244.
  5. Hidalgo, Gádor-Indra; Almajano, María Pilar (2017). "Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review". Antioxidants. 6 (1): 7. doi: 10.3390/antiox6010007 . PMC   5384171 . PMID   28106822.
  6. 1 2 3 4 Gross, Paul (1 March 2009), New Roles for Polyphenols. A 3-Part Report on Current Regulations and the State of Science, Nutraceuticals World
  7. Bors, Wolf; Heller, Werner; Michel, Christa; Saran, Manfred (1990). "[36] Flavonoids as antioxidants: Determination of radical-scavenging efficiencies". Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants. Methods in Enzymology. Vol. 186. pp.  343–55. doi:10.1016/0076-6879(90)86128-I. ISBN   978-0121820879. PMID   2172711.
  8. Carocho, M; Ferreira, IC (January 2013). "A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives". Food and Chemical Toxicology. 51: 15–25. doi:10.1016/j.fct.2012.09.021. hdl: 10198/8534 . PMID   23017782.
  9. C. Fajardo-Lirai, S. M. Henning, H. W. Lee, V. L. W. Go, and D. Heber,. Department Family Environmental Sciences/Nutrition, Dietetics & Food Science, California State University, Northridge and, UCLA Center for Human Nutrition, Session 46C, 2002 Annual meeting of Food Expo, Anaheim, Ca
  10. 1 2 "Withdrawn: Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2 (2010)". United States Department of Agriculture, Agricultural Research Service. 16 May 2012. Retrieved 31 January 2018.
  11. Podda M, Grundmann-Kollmann M (October 2001). "Low molecular weight antioxidants and their role in skin ageing". Clinical and Experimental Dermatology. 26 (7): 578–82. doi:10.1046/j.1365-2230.2001.00902.x. PMID   11696061. S2CID   19659324.
  12. Peyrat-Maillard, M. N.; Cuvelier, M. E.; Berset, C. (2003). "Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects". Journal of the American Oil Chemists' Society. 80 (10): 1007. doi:10.1007/s11746-003-0812-z. S2CID   86810404.
  13. Stintzing, Florian C.; Stintzing, Angela S.; Carle, Reinhold; Frei, Balz; Wrolstad, Ronald E. (2002). "Color and Antioxidant Properties of Cyanidin-Based Anthocyanin Pigments". Journal of Agricultural and Food Chemistry. 50 (21): 6172–81. doi:10.1021/jf0204811. PMID   12358498.
  14. Dvorakova, Marketa; Moreira, Manuela M.; Dostalek, Pavel; Skulilova, Zuzana; Guido, Luís F.; Barros, Aquiles A. (2008). "Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography–ultraviolet detection–electrospray ionization mass spectrometry". Journal of Chromatography A. 1189 (1–2): 398–405. doi:10.1016/j.chroma.2007.10.080. PMID   18035361.