Tyrosol

Last updated
Tyrosol
Tyrosol.svg
Names
Preferred IUPAC name
4-(2-Hydroxyethyl)phenol
Other names
p-Hydroxyphenethyl alcohol
2-(4-Hydroxyphenyl)ethanol
4-Hydroxyphenylethanol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.210 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2 Yes check.svgY
    Key: YCCILVSKPBXVIP-UHFFFAOYSA-N Yes check.svgY
  • InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2
  • InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2
    Key: YCCILVSKPBXVIP-UHFFFAOYSA-N
  • Oc1ccc(cc1)CCO
Properties
C8H10O2
Molar mass 138.164 g/mol
Melting point 91 to 92 °C (196 to 198 °F; 364 to 365 K)
Boiling point 158 °C (316 °F; 431 K) at 4 Torr
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tyrosol is an organic compound with the formula HOC6H4CH2CH2OH. Classified as a phenylethanoid, i.e. a derivative of phenethyl alcohol, It is found in a variety of natural sources. The compound is colorless solid. The principal source in the human diet is olive oil. [1] [2]

Contents

Research

As an antioxidant, tyrosol may protect cells against injury due to oxidation in vitro . [3] Although it is not as potent as other antioxidants present in olive oil (e.g., hydroxytyrosol), its higher concentration and good bioavailability indicate that it may have an important overall effect. [4]

Tyrosol may also be cardioprotective. Trosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. [5] In addition, tyrosol also induced the expression of the protein SIRT1 in the heart after myocardial infarction in a rat MI model. [6]

Tyrosol forms esters with a variety of organic acids. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Lipid emulsion</span>

Lipid emulsion or fat emulsion refers to an emulsion of fat for human intravenous use, to administer nutrients to critically-ill patients that cannot consume food. It is often referred to by the brand name of the most commonly used version, Intralipid, which is an emulsion containing soybean oil, egg phospholipids and glycerin, and is available in 10%, 20% and 30% concentrations. The 30% concentration is not approved for direct intravenous infusion, but should be mixed with amino acids and dextrose as part of a total nutrient admixture.

<span class="mw-page-title-main">Caffeic acid</span> Chemical compound

Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is an intermediate in the biosynthesis of lignin, one of the principal components of woody plant biomass and its residues.

<span class="mw-page-title-main">Hydroxytyrosol</span> Chemical compound

Hydroxytyrosol is an organic compound with the formula (HO)2C6H3CH2CH2OH. It is a phenylethanoid, i.e. a relative of phenethyl alcohol. Its derivatives are found in a variety of natural sources, notably olive oils and wines. Hydroxytyrosol is a colorless solid, although samples often turn beige during storage. It is a derivative, formally speaking, of catechol.

<span class="mw-page-title-main">Oleuropein</span> Chemical compound

Oleuropein is a glycosylated seco-iridoid, a type of phenolic bitter compound found in green olive skin, flesh, seeds, and leaves. The term oleuropein is derived from the botanical name of the olive tree, Olea europaea.

<span class="mw-page-title-main">Olive leaf</span>

Olive leaf is the leaf of the olive tree. Although olive oil is well known for its flavor and possible health benefits, the leaf and its extracts remain under preliminary research with unknown effects on human health.

<span class="mw-page-title-main">Anthocyanin</span> Class of chemical compounds

Anthocyanins, also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical compound that gives flowers a blue color for the first time in his treatise "Die Farben der Blüthen". Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

<span class="mw-page-title-main">Elenolic acid</span> Chemical compound

Elenolic acid is a component of olive oil, olive infusion and olive leaf extract. It can be considered as a marker for maturation of olives.

<span class="mw-page-title-main">Syringic acid</span> Chemical compound

Syringic acid is a naturally occurring phenolic compound and dimethoxybenzene that is commonly found as a plant metabolite.

<span class="mw-page-title-main">BRL-52537</span> Chemical compound

BRL-52537 is a drug which acts as a potent and highly selective κ-opioid agonist. It has neuroprotective effects in animal studies, and is used for research into potential treatments for stroke and heart attack as well as more general brain research.

<span class="mw-page-title-main">Naturally occurring phenols</span> Group of chemical compounds

In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.

Vinyldithiins, more precisely named 3-vinyl-4H-1,2-dithiin and 2-vinyl-4H-1,3-dithiin, are organosulfur phytochemicals formed in the breakdown of allicin from crushed garlic (Allium sativum). Vinyldithiins are Diels-Alder dimers of thioacrolein, H2C=CHCH=S, formed in turn by decomposition of allicin. In garlic supplements, vinyldithiins are only found in garlic oil macerates that are made by incubation of crushed garlic in oil.

<span class="mw-page-title-main">Miquelianin</span> Chemical compound

Miquelianin is a flavonol glucuronide, a type of phenolic compound present in wine, in species of St John's wort, like Hypericum hirsutum, in Nelumbo nucifera or in green beans.

<span class="mw-page-title-main">Rottlerin</span> Chemical compound

Rottlerin (mallotoxin) is a polyphenol natural product isolated from the Asian tree Mallotus philippensis. Rottlerin displays a complex spectrum of pharmacology.

<span class="mw-page-title-main">Lambertianin C</span> Chemical compound

Lambertianin C is an ellagitannin.

<span class="mw-page-title-main">Sanguiin H-6</span> Chemical compound

Sanguiin H-6 is an ellagitannin.

Diallyl trisulfide (DATS), also known as Allitridin, is an organosulfur compound with the formula S(SCH2CH=CH2)2. It is one of several compounds produced by hydrolysis of allicin, including diallyl disulfide and diallyl tetrasulfide; DATS is one of the most potent.

<span class="mw-page-title-main">Urolithin B</span> Chemical compound

Urolithin B (UB) is an urolithin, a type of phenolic compounds produced in the human gut after absorption of ellagitannins-containing food such as pomegranate, strawberries, red raspberries, walnuts or oak-aged red wine. Urolithin B is found in the urine in the form of urolithin B glucuronide.

Cardioprotection includes all mechanisms and means that contribute to the preservation of the heart by reducing or even preventing myocardial damage. Cardioprotection encompasses several regimens that have shown to preserve function and viability of cardiac muscle cell tissue subjected to ischemic insult or reoxygenation. Cardioprotection includes strategies that are implemented before an ischemic event, during an ischemic event and after the event and during reperfusion. These strategies can be further stratified by performing the intervention locally or remotely, creating classes of conditioning known as remote ischemic PC (RIPC), remote ischemic PostC and remote ischemic PerC. Classical (local) preconditioning has an early phase with an immediate onset lasting 2–3 hours that protects against myocardial infarction. The early phase involves post-translational modification of preexisting proteins, brought about by the activation of G protein-coupled receptors as well as downstream MAPK's and PI3/Akt. These signaling events act on the ROS-generating mitochondria, activate PKCε and the Reperfusion Injury Salvage Kinase (RISK) pathway, preventing mitochondrial permeability transition pore (MTP) opening. The late phase with an onset of 12–24 hours that lasts 3–4 days and protects against both infarction and reversible postischemic contractile dysfunction, termed myocardial stunning. This phase involves the synthesis of new cardioprotective proteins stimulated by nitric oxide (NO), ROS and adenosine acting on kinases such as PKCε and Src, which in turn activate gene transcription and upregulation of late PC molecular players.

Remote ischemic conditioning (RIC) is an experimental medical procedure that aims to reduce the severity of ischaemic injury to an organ such as the heart or the brain, most commonly in the situation of a heart attack or a stroke, or during procedures such as heart surgery when the heart may temporary suffer ischaemia during the operation, by triggering the body's natural protection against tissue injury. Although noted to have some benefits in experimental models in animals, this is still an experimental procedure in humans and initial evidence from small studies have not been replicated in larger clinical trials. Successive clinical trials have failed to identify evidence supporting a protective role in humans.

References

  1. Charoenprasert, Suthawan; Mitchell, Alyson (2012). "Factors Influencing Phenolic Compounds in Table Olives (Olea europaea)". Journal of Agricultural and Food Chemistry. 60 (29): 7081–7095. doi:10.1021/jf3017699. PMID   22720792.
  2. Karković Marković, Ana; Torić, Jelena; Barbarić, Monika; Jakobušić Brala, Cvijeta (2019). "Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health". Molecules. 24 (10): 2001. doi: 10.3390/molecules24102001 . PMC   6571782 . PMID   31137753.
  3. Giovannini C, Straface E, Modesti D, Coni E, Cantafora A, De Vincenzi M, Malorni W, Masella R (1999). "Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells". J. Nutr. 129 (7): 1269–1277. doi: 10.1093/jn/129.7.1269 . PMID   10395586.
  4. Miró-Casas E, Covas M, Fitó M, Farré-Albadalejo M, Marrugat J, de la Torre R (2003). "Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans". European Journal of Clinical Nutrition. 57 (1): 186–190. doi: 10.1038/sj.ejcn.1601532 . PMID   12548315.
  5. Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N (2008). "Akt/FOXO3a/SIRT1-Mediated Cardioprotection by n-Tyrosol against Ischemic Stress in Rat in Vivo Model of Myocardial Infarction: Switching Gears toward Survival and Longevity". Journal of Agricultural and Food Chemistry . 56 (20): 9692–8. doi:10.1021/jf802050h. PMC   2648870 . PMID   18826227.
  6. Samuel, Samson Mathews; Thirunavukkarasu, Mahesh; Penumathsa, Suresh Varma; Paul, Debayon; Maulik, Nilanjana (2008-10-22). "Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity". Journal of Agricultural and Food Chemistry. 56 (20): 9692–9698. doi:10.1021/jf802050h. ISSN   1520-5118. PMC   2648870 . PMID   18826227.
  7. Lucas, Ricardo; Comelles, Francisco; AlcáNtara, David; Maldonado, Olivia S.; Curcuroze, Melanie; Parra, Jose L.; Morales, Juan C. (2010). "Surface-Active Properties of Lipophilic Antioxidants Tyrosol and Hydroxytyrosol Fatty Acid Esters: A Potential Explanation for the Nonlinear Hypothesis of the Antioxidant Activity in Oil-in-Water Emulsions". Journal of Agricultural and Food Chemistry. 58 (13): 8021–8026. doi:10.1021/jf1009928. PMID   20524658.