Tyrosol

Last updated
Tyrosol
Tyrosol.svg
Names
Preferred IUPAC name
4-(2-Hydroxyethyl)phenol
Other names
p-Hydroxyphenethyl alcohol
2-(4-Hydroxyphenyl)ethanol
4-Hydroxyphenylethanol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.210 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2 Yes check.svgY
    Key: YCCILVSKPBXVIP-UHFFFAOYSA-N Yes check.svgY
  • InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2
  • InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2
    Key: YCCILVSKPBXVIP-UHFFFAOYSA-N
  • Oc1ccc(cc1)CCO
Properties
C8H10O2
Molar mass 138.164 g/mol
Melting point 91 to 92 °C (196 to 198 °F; 364 to 365 K)
Boiling point 158 °C (316 °F; 431 K) at 4 Torr
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tyrosol is an organic compound with the formula HOC6H4CH2CH2OH. Classified as a phenylethanoid, a derivative of phenethyl alcohol, it is found in a variety of natural sources. The compound is colorless solid. The principal source in the human diet is olive oil. [1] [2]

Contents

Research

As an antioxidant, tyrosol may protect cells against injury due to oxidation in vitro . [3] Although it is not as potent as other antioxidants present in olive oil (e.g., hydroxytyrosol), its higher concentration and good bioavailability indicate that it may have an important overall effect. [4]

Tyrosol may also be cardioprotective. Tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS, and FOXO3a. [5] In addition, tyrosol also induced the expression of the protein SIRT1 in the heart after myocardial infarction (MI) in a rat MI model. [6]

Tyrosol forms esters with a variety of organic acids. [7] For example, oleocanthal is the elenolic acid ester of tyrosol.

See also

Related Research Articles

<span class="mw-page-title-main">Grape</span> Fruit growing on woody vines in clusters

A grape is a fruit, botanically a berry, of the deciduous woody vines of the flowering plant genus Vitis. Grapes are a non-climacteric type of fruit, generally occurring in clusters.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include phenolic acids, flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Lipid emulsion</span> Emulsion of fat for human intravenous use

Lipid emulsion or fat emulsion refers to an emulsion of fat for human intravenous use, to administer nutrients to critically-ill patients that cannot consume food. It is often referred to by the brand name of the most commonly used version, Intralipid, which is an emulsion containing soybean oil, egg phospholipids and glycerin, and is available in 10%, 20% and 30% concentrations. The 30% concentration is not approved for direct intravenous infusion, but should be mixed with amino acids and dextrose as part of a total nutrient admixture.

<span class="mw-page-title-main">Chlorogenic acid</span> Chemical compound

Chlorogenic acid (CGA) is the ester of caffeic acid and (−)-quinic acid, functioning as an intermediate in lignin biosynthesis. The term chlorogenic acids refers to a related polyphenol family of esters, including hydroxycinnamic acids with quinic acid.

<span class="mw-page-title-main">Caffeic acid</span> Chemical compound

Caffeic acid is an organic compound with the formula (HO)2C6H3CH=CHCO2H. It is a polyphenol. It is a yellow solid. Structurally, it is classified as a hydroxycinnamic acid. The molecule consists of both phenolic and acrylic functional groups. It is found in all plants as an intermediate in the biosynthesis of lignin, one of the principal components of biomass and its residues. It is unrelated to caffeine.

Autoxidation refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid, the 'drying' of varnishes and paints, and the perishing of rubber. It is also an important concept in both industrial chemistry and biology. Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.

<span class="mw-page-title-main">Hydroxytyrosol</span> Chemical compound

Hydroxytyrosol is an organic compound with the formula (HO)2C6H3CH2CH2OH. It is a phenylethanoid, i.e. a relative of phenethyl alcohol. Its derivatives are found in a variety of natural sources, notably olive oils and wines. Hydroxytyrosol is a colorless solid, although samples often turn beige during storage. It is a derivative, formally speaking, of catechol.

α-Eleostearic acid Chemical compound

α-Eleostearic acid or (9Z,11E,13E)-octadeca-9,11,13-trienoic acid, is an organic compound, a conjugated fatty acid and one of the isomers of octadecatrienoic acid. It is often called simply eleostearic acid although there is also a β-eleostearic acid. Its high degree of unsaturation gives tung oil its properties as a drying oil.

<span class="mw-page-title-main">Oleuropein</span> Chemical compound

Oleuropein is a glycosylated seco-iridoid, a type of phenolic bitter compound found in green olive skin, flesh, seeds, and leaves. The term oleuropein is derived from the botanical name of the olive tree, Olea europaea.

<span class="mw-page-title-main">Olive leaf</span> Herbal medicinal product

Olive leaf is the leaf of the olive tree. Although olive oil is well known for its flavor and possible health benefits, the leaf and its extracts remain under preliminary research with unknown effects on human health.

<span class="mw-page-title-main">3-Hydroxyanthranilic acid</span> Chemical compound

3-Hydroxyanthranilic acid is an intermediate in the metabolism of tryptophan. It is new antioxidant isolated from methanol extract of tempeh. It is effective in preventing autoxidation of soybean oil and powder, while antioxidant 6,7,4'-trihydroxyisoflavone is not.

<span class="mw-page-title-main">Elenolic acid</span> Chemical compound

Elenolic acid is a component of olive oil, olive infusion and olive leaf extract. It can be considered as a marker for maturation of olives.

<span class="mw-page-title-main">Syringic acid</span> Chemical compound

Syringic acid is a naturally occurring phenolic compound and dimethoxybenzene that is commonly found as a plant metabolite.

<span class="mw-page-title-main">BRL-52537</span> Chemical compound

BRL-52537 is a drug which acts as a potent and highly selective κ-opioid agonist. It has neuroprotective effects in animal studies, and is used for research into potential treatments for stroke and heart attack as well as more general brain research.

<span class="mw-page-title-main">Naturally occurring phenols</span> Group of chemical compounds

In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.

Vinyldithiins, more precisely named 3-vinyl-4H-1,2-dithiin and 2-vinyl-4H-1,3-dithiin, are organosulfur phytochemicals formed in the breakdown of allicin from crushed garlic (Allium sativum). Vinyldithiins are Diels-Alder dimers of thioacrolein, H2C=CHCH=S, formed in turn by decomposition of allicin. In garlic supplements, vinyldithiins are only found in garlic oil macerates that are made by incubation of crushed garlic in oil.

<span class="mw-page-title-main">Lambertianin C</span> Chemical compound

Lambertianin C is an ellagitannin.

<span class="mw-page-title-main">Sanguiin H-6</span> Chemical compound

Sanguiin H-6 is an ellagitannin.

<span class="mw-page-title-main">Urolithin B</span> Chemical compound

Urolithin B (UB) is an urolithin, a type of phenolic compounds produced in the human gut after absorption of ellagitannins-containing food such as pomegranate, strawberries, red raspberries, walnuts or oak-aged red wine. Urolithin B is found in the urine in the form of urolithin B glucuronide.

Cardioprotection includes all mechanisms and means that contribute to the preservation of the heart by reducing or even preventing myocardial damage. Cardioprotection encompasses several regimens that have shown to preserve function and viability of cardiac muscle cell tissue subjected to ischemic insult or reoxygenation. Cardioprotection includes strategies that are implemented before an ischemic event, during an ischemic event and after the event and during reperfusion. These strategies can be further stratified by performing the intervention locally or remotely, creating classes of conditioning known as remote ischemic PC (RIPC), remote ischemic PostC and remote ischemic PerC. Classical (local) preconditioning has an early phase with an immediate onset lasting 2–3 hours that protects against myocardial infarction. The early phase involves post-translational modification of preexisting proteins, brought about by the activation of G protein-coupled receptors as well as downstream MAPK's and PI3/Akt. These signaling events act on the ROS-generating mitochondria, activate PKCε and the Reperfusion Injury Salvage Kinase (RISK) pathway, preventing mitochondrial permeability transition pore (MTP) opening. The late phase with an onset of 12–24 hours that lasts 3–4 days and protects against both infarction and reversible postischemic contractile dysfunction, termed myocardial stunning. This phase involves the synthesis of new cardioprotective proteins stimulated by nitric oxide (NO), ROS and adenosine acting on kinases such as PKCε and Src, which in turn activate gene transcription and upregulation of late PC molecular players.

References

  1. Charoenprasert, Suthawan; Mitchell, Alyson (2012). "Factors Influencing Phenolic Compounds in Table Olives (Olea europaea)". Journal of Agricultural and Food Chemistry. 60 (29): 7081–7095. doi:10.1021/jf3017699. PMID   22720792.
  2. Karković Marković, Ana; Torić, Jelena; Barbarić, Monika; Jakobušić Brala, Cvijeta (2019). "Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health". Molecules. 24 (10): 2001. doi: 10.3390/molecules24102001 . PMC   6571782 . PMID   31137753.
  3. Giovannini C, Straface E, Modesti D, Coni E, Cantafora A, De Vincenzi M, Malorni W, Masella R (1999). "Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells". J. Nutr. 129 (7): 1269–1277. doi: 10.1093/jn/129.7.1269 . PMID   10395586.
  4. Miró-Casas E, Covas M, Fitó M, Farré-Albadalejo M, Marrugat J, de la Torre R (2003). "Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans". European Journal of Clinical Nutrition. 57 (1): 186–190. doi: 10.1038/sj.ejcn.1601532 . PMID   12548315.
  5. Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N (2008). "Akt/FOXO3a/SIRT1-Mediated Cardioprotection by n-Tyrosol against Ischemic Stress in Rat in Vivo Model of Myocardial Infarction: Switching Gears toward Survival and Longevity". Journal of Agricultural and Food Chemistry . 56 (20): 9692–8. doi:10.1021/jf802050h. PMC   2648870 . PMID   18826227.
  6. Samuel, Samson Mathews; Thirunavukkarasu, Mahesh; Penumathsa, Suresh Varma; Paul, Debayon; Maulik, Nilanjana (2008-10-22). "Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity". Journal of Agricultural and Food Chemistry. 56 (20): 9692–9698. doi:10.1021/jf802050h. ISSN   1520-5118. PMC   2648870 . PMID   18826227.
  7. Lucas, Ricardo; Comelles, Francisco; AlcáNtara, David; Maldonado, Olivia S.; Curcuroze, Melanie; Parra, Jose L.; Morales, Juan C. (2010). "Surface-Active Properties of Lipophilic Antioxidants Tyrosol and Hydroxytyrosol Fatty Acid Esters: A Potential Explanation for the Nonlinear Hypothesis of the Antioxidant Activity in Oil-in-Water Emulsions". Journal of Agricultural and Food Chemistry. 58 (13): 8021–8026. doi:10.1021/jf1009928. PMID   20524658.