Desformylflustrabromine

Last updated
Desformylflustrabromine
Desformylflustrabromine.svg
Clinical data
ATC code
  • none
Identifiers
  • 2-[6-bromo-2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl]-N-methylethanamine
CAS Number
PubChem CID
ChemSpider
Chemical and physical data
Formula C16H21BrN2
Molar mass 321.262 g·mol−1
3D model (JSmol)
  • C=CC(C)(C)c2[nH]c1cc(Br)ccc1c2CCNC
  • InChI=1S/C16H21BrN2/c1-5-16(2,3)15-13(8-9-18-4)12-7-6-11(17)10-14(12)19-15/h5-7,10,18-19H,1,8-9H2,2-4H3 X mark.svgN
  • Key:GQHSCJUTJKLZPX-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Desformylflustrabromine (dFBr) is a monomethyltryptamine derivative which was first isolated as a secondary metabolite of the marine bryozoan Flustra foliacea . [1]

Contents

Bioactivity

dFBr has been identified as a novel positive allosteric modulator of neuronal nicotinic acetylcholine receptor with sub-type specificity for heteromeric receptor with no effect on homomeric sub-type. [2] A recent study has been published which describes the synthesis of water-soluble salts of dFBr and its action has been confirmed as selective potentiator of α4β2 nicotinic acetylcholine receptor responses by using two-electrode voltage clamp whole cell recordings. [3] In the year 2002 it was reported that dFBr was cytotoxic on human colon cancer cell line HCT 116. [4]

Desformylflustrabromine has also been found to be a positive allosteric modulator for the α2β2 subtype of neuronal nicotinic acetylcholine receptor. Additionally it relieves the inhibition of both α2β2 and α4β2 nicotinic acetylcholine receptors by β-Amyloid (1–42) Peptide. [5] Thus desformylflustrabromine can potentially be used in the treatment of Alzheimer's disease. Many of the analogues and derivatives of dFBr are reported to have a potentiating effect on the α4β2 receptors. [6] [7]

Modulation of nicotonic acetylcholine receptor function by desformylflustrabromine has also been found to produce analgesic and anti-allodynic effects in animal models, which could potentially make it of interest for the treatment of neuropathic pain. [8] [9] Anti-addictive and pro-cognitive actions have also been demonstrated. [10] [11] Furthermore, limited experimental data suggests a potential use in treating the compulsive behaviors seen in OCD. [12]

Related Research Articles

<span class="mw-page-title-main">Nicotinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of nicotine

Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction. In the peripheral nervous system: (1) they transmit outgoing signals from the presynaptic to the postsynaptic cells within the sympathetic and parasympathetic nervous system, and (2) they are the receptors found on skeletal muscle that receive acetylcholine released to signal for muscular contraction. In the immune system, nAChRs regulate inflammatory processes and signal through distinct intracellular pathways. In insects, the cholinergic system is limited to the central nervous system.

<span class="mw-page-title-main">Galantamine</span> Neurological medication

Galantamine is used for the treatment of cognitive decline in mild to moderate Alzheimer's disease and various other memory impairments. It is an alkaloid that has been isolated from the bulbs and flowers of Galanthus nivalis, Galanthus caucasicus, Galanthus woronowii, and some other members of the family Amaryllidaceae, such as Narcissus (daffodil), Leucojum aestivum (snowflake), and Lycoris including Lycoris radiata. It can also be produced synthetically.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions (Cl) and, to a lesser extent, bicarbonate ions (HCO3). Depending on the membrane potential and the ionic concentration difference, this can result in ionic fluxes across the pore. If the membrane potential is higher than the equilibrium potential (also known as the reversal potential) for chloride ions, when the receptor is activated Cl will flow into the cell. This causes an inhibitory effect on neurotransmission by diminishing the chance of a successful action potential occurring at the postsynaptic cell. The reversal potential of the GABAA-mediated inhibitory postsynaptic potential (IPSP) in normal solution is −70 mV, contrasting the GABAB IPSP (-100 mV).

<span class="mw-page-title-main">Allopregnanolone</span> Endogenous inhibitory neurosteroid

Allopregnanolone is a naturally occurring neurosteroid which is made in the body from the hormone progesterone. As a medication, allopregnanolone is referred to as brexanolone, sold under the brand name Zulresso, and used to treat postpartum depression. It is used by injection into a vein over a 60-hour period under medical supervision.

The muscle-type nicotinic receptor is a type of nicotinic acetylcholine receptor consisting of the subunit combination (α1)2β1δε (adult receptor) or (α1)2β1δγ (fetal receptor). These receptors are found in neuromuscular junctions, where activation leads to an excitatory postsynaptic potential (EPSP), mainly by increased Na+ and K+ permeability.

The alpha-4 beta-2 nicotinic receptor, also known as the α4β2 receptor, is a type of nicotinic acetylcholine receptor implicated in learning, consisting of α4 and β2 subunits. It is located in the brain, where activation yields post- and presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Alpha-7 nicotinic receptor</span>

The alpha-7 nicotinic receptor, also known as the α7 receptor, is a type of nicotinic acetylcholine receptor implicated in long-term memory, consisting entirely of α7 subunits. As with other nicotinic acetylcholine receptors, functional α7 receptors are pentameric [i.e., (α7)5 stoichiometry].

<span class="mw-page-title-main">CHRNA2</span> Protein-coding gene in the species Homo sapiens

Neuronal acetylcholine receptor subunit alpha-2, also known as nAChRα2, is a protein that in humans is encoded by the CHRNA2 gene. The protein encoded by this gene is a subunit of certain nicotinic acetylcholine receptors (nAchR).

In pharmacology and biochemistry, allosteric modulators are a group of substances that bind to a receptor to change that receptor's response to stimulus. Some of them, like benzodiazepines, are drugs. The site that an allosteric modulator binds to is not the same one to which an endogenous agonist of the receptor would bind. Modulators and agonists can both be called receptor ligands.

<span class="mw-page-title-main">UB-165</span> Pharmaceutical drug

UB-165 is a drug which acts as an agonist at neuronal nicotinic acetylcholine receptors being a full agonist of the α3β2 isoform and a partial agonist of the α4β2* isoform. It is used to study the role of this receptor subtype in the release of dopamine and noradrenaline in the brain, and has also been used as a lead compound to derive a number of other selective nicotinic receptor ligands.

<span class="mw-page-title-main">PNU-120,596</span> Chemical compound

PNU-120596 is a drug that acts as a potent and selective positive allosteric modulator for the α7 subtype of neural nicotinic acetylcholine receptors. It is used in scientific research into cholinergic regulation of dopamine and glutamate release in the brain.

<span class="mw-page-title-main">PNU-282,987</span> Chemical compound

PNU-282,987 is a drug that acts as a potent and selective agonist for the α7 subtype of neural nicotinic acetylcholine receptors. In animal studies, it shows nootropic effects, and derivatives may be useful in the treatment of schizophrenia, although PNU-282,987 is not suitable for use in humans because of excessive inhibition of the hERG antitarget. PNU-282987 has been shown to initiate signaling that leads to adult neurogeneis in mammals.

<span class="mw-page-title-main">PHA-543,613</span> Chemical compound

PHA-543,613 is a drug that acts as a potent and selective agonist for the α7 subtype of neural nicotinic acetylcholine receptors, with a high level of brain penetration and good oral bioavailability. It is under development as a possible treatment for cognitive deficits in schizophrenia. It reduces excitotoxicity and protects striatal dopaminergic neurons in rat models. It also potentiates cognitive enhancement from memantine, decreases dynorphin release and inhibits GSK-B3.

The alpha-3 beta-4 nicotinic receptor, also known as the α3β4 receptor and the ganglion-type nicotinic receptor, is a type of nicotinic acetylcholine receptor, consisting of α3 and β4 subunits. It is located in the autonomic ganglia and adrenal medulla, where activation yields post- and/or presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Coronaridine</span> Chemical compound

Coronaridine, also known as 18-carbomethoxyibogamine, is an alkaloid found in Tabernanthe iboga and related species, including Tabernaemontana divaricata for which it was named.

<span class="mw-page-title-main">SB-206553</span> Chemical compound

SB-206553 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors. It has anxiolytic properties in animal studies and interacts with a range of other drugs. It has also been shown to act as a positive allosteric modulator of α7 nicotinic acetylcholine receptors. Modified derivatives of SB-206553 have been used to probe the structure of the 5-HT2B receptor.

GABA<sub>A</sub> receptor positive allosteric modulator

In pharmacology, GABAA receptor positive allosteric modulators are positive allosteric modulator (PAM) molecules that increase the activity of the GABAA receptor protein in the vertebrate central nervous system.

The alpha-3 beta-2 nicotinic receptor, also known as the α3β2 receptor, is a type of nicotinic acetylcholine receptor, consisting of α3 and β2 subunits.

<span class="mw-page-title-main">JNJ-39393406</span> Chemical compound

JNJ-39393406 is an experimental medication which is under development by Janssen Pharmaceutica, a division of Johnson & Johnson, for the treatment of depressive disorders and smoking withdrawal. It acts as a selective positive allosteric modulator of the α7 nicotinic acetylcholine receptor (nAChR). It does not act on the α4β2 or α3β4 nAChRs or the serotonin 5-HT3 receptor, and does not interact with a panel of 62 other receptors and enzymes. The drug has been found to lower the agonist and nicotine threshold for activation of the α7 nAChR by 10- to 20-fold and to increase the maximum agonist response of the α7 nAChR by 17- to 20-fold.

References

  1. Peters L, Wright AD, Kehraus S, Gündisch D, Tilotta MC, König GM (October 2004). "Prenylated indole alkaloids from Flustra foliacea with subtype specific binding on NAChRs". Planta Medica. 70 (10): 883–6. doi:10.1055/s-2004-832610. PMID   15490312.
  2. Sala F, Mulet J, Reddy KP, Bernal JA, Wikman P, Valor LM, et al. (January 2005). "Potentiation of human alpha4beta2 neuronal nicotinic receptors by a Flustra foliacea metabolite". Neuroscience Letters. 373 (2): 144–9. doi:10.1016/j.neulet.2004.10.002. PMID   15567570. S2CID   54375870.
  3. Kim JS, Padnya A, Weltzin M, Edmonds BW, Schulte MK, Glennon RA (September 2007). "Synthesis of desformylflustrabromine and its evaluation as an alpha4beta2 and alpha7 nACh receptor modulator". Bioorganic & Medicinal Chemistry Letters. 17 (17): 4855–60. doi:10.1016/j.bmcl.2007.06.047. PMC   3633077 . PMID   17604168.
  4. Lysek N, Rachor E, Lindel T (2002). "Isolation and structure elucidation of deformylflustrabromine from the North Sea bryozoan Flustra foliacea". Zeitschrift für Naturforschung C. 57 (11–12): 1056–61. doi:10.1515/znc-2002-11-1218. PMID   12562094. S2CID   8791934.
  5. Pandya A, Yakel JL (September 2011). "Allosteric modulator Desformylflustrabromine relieves the inhibition of α2β2 and α4β2 nicotinic acetylcholine receptors by β-amyloid(1-42) peptide". Journal of Molecular Neuroscience. 45 (1): 42–7. doi:10.1007/s12031-011-9509-3. PMC   3235685 . PMID   21424792.
  6. German N, Kim JS, Jain A, Dukat M, Pandya A, Ma Y, et al. (October 2011). "Deconstruction of the α4β2 nicotinic acetylcholine receptor positive allosteric modulator desformylflustrabromine". Journal of Medicinal Chemistry. 54 (20): 7259–67. doi:10.1021/jm200834x. PMC   3200116 . PMID   21905680.
  7. Dukat M, Jain A, German N, Ferrara-Pontoriero R, Huang Y, Ma Y, Schulte MK, Glennon RA (December 2018). "des-Formylflustrabromine (dFBr): A Structure-Activity Study on Its Ability To Potentiate the Action of Acetylcholine at α4β2 Nicotinic Acetylcholine Receptors". ACS Chemical Neuroscience. 9 (12): 2984–2996. doi:10.1021/acschemneuro.8b00156. PMID   30028943.
  8. Bagdas D, Ergun D, Jackson A, Toma W, Schulte MK, Damaj MI (January 2018). "Allosteric modulation of α4β2* nicotinic acetylcholine receptors: Desformylflustrabromine potentiates antiallodynic response of nicotine in a mouse model of neuropathic pain". European Journal of Pain. 22 (1): 84–93. doi:10.1002/ejp.1092. PMID   28809075. S2CID   11131072.
  9. Weggel LA, Pandya AA (March 2019). "Acute Administration of Desformylflustrabromine Relieves Chemically Induced Pain in CD-1 Mice". Molecules. 24 (5): 944. doi: 10.3390/molecules24050944 . PMC   6432607 . PMID   30866543.
  10. Hamouda AK, Jackson A, Bagdas D, Imad Damaj M (June 2018). "Reversal of Nicotine Withdrawal Signs Through Positive Allosteric Modulation of α4β2 Nicotinic Acetylcholine Receptors in Male Mice". Nicotine & Tobacco Research. 20 (7): 903–907. doi:10.1093/ntr/ntx183. PMC   5991208 . PMID   29059422.
  11. Nikiforuk A, Litwa E, Krawczyk M, Popik P, Arias H (March 2020). "Desformylflustrabromine, a positive allosteric modulator of α4β2-containing nicotinic acetylcholine receptors, enhances cognition in rats". Pharmacological Reports. 72 (3): 589–599. doi: 10.1007/s43440-020-00092-4 . PMC   7329799 . PMID   32207091.
  12. Mitra, Swarup; Mucha, Mckenzie; Khatri, Shailesh N.; Glenon, Richard; Schulte, Marvin K.; Bult-Ito, Abel (2016). "Attenuation of Compulsive-Like Behavior Through Positive Allosteric Modulation of α4β2 Nicotinic Acetylcholine Receptors in Non-Induced Compulsive-Like Mice". Frontiers in Behavioral Neuroscience. 10: 244. doi: 10.3389/fnbeh.2016.00244 . ISSN   1662-5153. PMC   5214813 . PMID   28105008.

Further reading