VER-3323

Last updated
VER-3323
VER-3323.svg
Identifiers
  • (2S)-1-(6-bromo-2,3-dihydroindol-1-yl)propan-2-amine
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C11H15BrN2
Molar mass 255.159 g·mol−1
3D model (JSmol)
  • C[C@@H](CN1CCc2c1cc(cc2)Br)N
  • InChI=1S/C11H15BrN2/c1-8(13)7-14-5-4-9-2-3-10(12)6-11(9)14/h2-3,6,8H,4-5,7,13H2,1H3/t8-/m0/s1
  • Key:QGRQJMXAQYGAKK-QMMMGPOBSA-N
   (verify)

VER-3323 is a drug which acts as a selective agonist for both the 5-HT2B and 5-HT2C serotonin receptor subtypes, with moderate selectivity for 5-HT2C, but relatively low affinity for 5-HT2A. It has potent anorectic effects in animal studies. [1] [2] [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Lisuride</span> Chemical compound

Lisuride, sold under the brand name Dopergin among others, is a monoaminergic medication of the ergoline class which is used in the treatment of Parkinson's disease, migraine, and high prolactin levels. It is taken by mouth.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

<i>meta</i>-Chlorophenylpiperazine Stimulant

meta-Chlorophenylpiperazine (mCPP) is a psychoactive drug of the phenylpiperazine class. It was initially developed in the late-1970s and used in scientific research before being sold as a designer drug in the mid-2000s. It has been detected in pills touted as legal alternatives to illicit stimulants in New Zealand and pills sold as "ecstasy" in Europe and the United States.

5-HT<sub>2C</sub> receptor Serotonin receptor protein distributed mainly in the choroid plexus

The 5-HT2C receptor is a subtype of the 5-HT2 receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, it is a G protein-coupled receptor (GPCR) that is coupled to Gq/G11 and mediates excitatory neurotransmission. HTR2C denotes the human gene encoding for the receptor, that in humans is located on the X chromosome. As males have one copy of the gene and females have one of the two copies of the gene repressed, polymorphisms at this receptor can affect the two sexes to differing extent.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, the 5-HT2B receptor is Gq/G11-protein coupled, leading to downstream activation of phospholipase C.

<span class="mw-page-title-main">Xanomeline</span> Chemical compound

Xanomeline is a small molecule muscarinic acetylcholine receptor agonist that was first synthesized in a collaboration between Eli Lilly and Novo Nordisk as an investigational therapeutic being studied for the treatment of central nervous system (CNS) disorders.

<span class="mw-page-title-main">Sarpogrelate</span> Chemical compound

Sarpogrelate is a drug which acts as an antagonist at the serotonin 5-HT2A5-HT2B, and 5-HT2C receptors. However, its affinities for the human 5-HT2C and 5-HT2B receptors are about one and two orders of magnitude lower than for the human 5-HT2A receptor, respectively. The drug blocks serotonin-induced platelet aggregation, and has potential applications in the treatment of many diseases including diabetes mellitus, Buerger's disease, Raynaud's disease, coronary artery disease, angina pectoris, and atherosclerosis.

<span class="mw-page-title-main">ELB-139</span> Chemical compound

ELB-139 (LS-191,811) is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">Ro60-0175</span> Chemical compound

Ro60-0175 is a drug of the isotryptamine group developed by Hoffmann–La Roche, which has applications in scientific research. It acts as a potent and selective agonist for both the 5-HT2B and 5-HT2C serotonin receptor subtypes, with good selectivity over the closely related 5-HT2A subtype, and little or no affinity at other receptors.

<span class="mw-page-title-main">Serotonin releasing agent</span> Class of compounds

A serotonin releasing agent (SRA) is a type of drug that induces the release of serotonin into the neuronal synaptic cleft. A selective serotonin releasing agent (SSRA) is an SRA with less significant or no efficacy in producing neurotransmitter efflux at other types of monoamine neurons, including dopamine and norepinephrine neurons.

<span class="mw-page-title-main">SDZ SER-082</span> Chemical compound

SDZ SER-082 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors, with good selectivity over other serotonin receptor subtypes and slight preference for 5-HT2C over 5-HT2B. It has been used in animal studies into the behavioural effects of the different 5-HT2 subtypes, and how they influence the effects of other drugs such as cocaine.

<span class="mw-page-title-main">Serotonin antagonist and reuptake inhibitor</span> Class of drug

Serotonin antagonist and reuptake inhibitors (SARIs) are a class of drugs used mainly as antidepressants, but also as anxiolytics and hypnotics. They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or dopamine. Additionally, most also antagonize α1-adrenergic receptors. The majority of the currently marketed SARIs belong to the phenylpiperazine class of compounds.

<span class="mw-page-title-main">ORG-37684</span> Chemical compound

ORG-37684 is a drug developed by Organon, which acts as a potent and selective agonist for the 5-HT2 receptor family, with highest affinity at 5-HT2C and lowest at 5-HT2B subtypes. It has anorectic effects in animal studies and has been researched as a potential weight loss drug for use in humans.

<span class="mw-page-title-main">CGS-12066A</span> Chemical compound

CGS-12066A is a drug which acts as a potent and selective agonist for the 5-HT1B receptor with lower affinity for the three 5-HT2 receptor subtypes. It is used for studying the role of the 5-HT1B receptor in various processes including perception of pain and the sleep-wake cycle.

<span class="mw-page-title-main">Naphthylpiperazine</span> Chemical compound

1-(1-Naphthyl)piperazine (1-NP) is a drug which is a phenylpiperazine derivative. It acts as a non-selective, mixed serotonergic agent, exerting partial agonism at the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F receptors, while antagonizing the 5-HT2A, 5-HT2B, and 5-HT2C receptors. It has also been shown to possess high affinity for the 5-HT3, 5-HT5A, 5-HT6, and 5-HT7 receptors, and may bind to 5-HT4 and the SERT as well. In animals it produces effects including hyperphagia, hyperactivity, and anxiolysis, of which are all likely mediated predominantly or fully by blockade of the 5-HT2C receptor.

<span class="mw-page-title-main">Ro60-0213</span> Chemical compound

Ro60-0213 is a drug developed by Hoffmann–La Roche, which acts as a potent and selective agonist for the 5-HT2C serotonin receptor, with more than 100x selectivity over other closely related serotonin receptor subtypes, and little or no affinity at other receptors. It was developed as a potential antidepressant, but was discontinued from clinical development at an early stage due to toxicity concerns. However the high selectivity of Ro60-0213 for 5-HT2C makes it of continued interest for research into serotonin receptors.

5-HT2C receptor agonists are a class of drugs that activate 5-HT2C receptors. They have been investigated for the treatment of a number of conditions including obesity, psychiatric disorders, sexual dysfunction and urinary incontinence.

<span class="mw-page-title-main">25CN-NBOH</span> Chemical compound

25CN-NBOH is a compound indirectly derived from the phenethylamine series of hallucinogens, which was discovered in 2014 at the University of Copenhagen. It is a member of the NBOMe family of psychedelics.

<span class="mw-page-title-main">WAY-163909</span> Chemical compound

WAY-163,909 is a drug which acts as a potent and reasonably selective agonist for the serotonin 5-HT2C receptor. It has antipsychotic-like effects in animal models, and has been used to study the role of the 5-HT2C receptor subtype in the action of addictive drugs such as nicotine and methamphetamine.

References

  1. Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (August 2004). "Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors". Naunyn-Schmiedeberg's Archives of Pharmacology. 370 (2): 114–23. doi:10.1007/s00210-004-0951-4. PMID   15322733. S2CID   8938111.
  2. Halford JC, Harrold JA, Lawton CL, Blundell JE (March 2005). "Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity". Current Drug Targets. 6 (2): 201–13. doi:10.2174/1389450053174550. PMID   15777190.
  3. Schuhler S, Clark A, Joseph W, Patel A, Lehnen K, Stratford E, Horan TL, Fone KC, Ebling FJ (May 2005). "Involvement of 5-HT receptors in the regulation of food intake in Siberian hamsters". Journal of Neuroendocrinology. 17 (5): 276–85. doi:10.1111/j.1365-2826.2005.01303.x. PMID   15869562. S2CID   31333248.
  4. Song J, Hanniford D, Doucette C, Graham E, Poole MF, Ting A, Sherf B, Harrington J, Brunden K, Stricker-Krongrad A (December 2005). "Development of homogeneous high-affinity agonist binding assays for 5-HT2 receptor subtypes". ASSAY and Drug Development Technologies. 3 (6): 649–59. doi:10.1089/adt.2005.3.649. PMID   16438660.