Cyclic 3-hydroxymelatonin

Last updated
Cyclic 3-hydroxymelatonin
Cyclic 3-hydroxymelatonin.svg
Names
IUPAC name
1-[(3aS,8bR)-8b-Hydroxy-7-methoxy-1,2,3a,4-tetrahydropyrrolo[2,3-b]indol-3-yl]ethanone
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C13H16N2O3/c1-8(16)15-6-5-13(17)10-7-9(18-2)3-4-11(10)14-12(13)15/h3-4,7,12,14,17H,5-6H2,1-2H3/t12-,13+/m0/s1
    Key: VADOSKJWFKUPQF-QWHCGFSZSA-N
  • CC(=O)N1CC[C@@]2([C@H]1NC3=C2C=C(C=C3)OC)O
Properties
C13H16N2O3
Molar mass 248.282 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyclic 3-hydroxymelatonin (3-OHM) is a metabolite of melatonin and an antioxidant more potent than melatonin. [1] It is a non-radical species and does not further propagate the radical chain reaction

It is a footprint product of the reaction between melatonin and hydroxyl radical. [2]

Related Research Articles

<span class="mw-page-title-main">Tryptophan</span> Chemical compound

Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent. Tryptophan is also a precursor to the neurotransmitter serotonin, the hormone melatonin, and vitamin B3. It is encoded by the codon UGG.

<span class="mw-page-title-main">Melatonin</span> Hormone released by the pineal gland

Melatonin, an indoleamine, is a natural compound produced by various organisms, including bacteria and eukaryotes. Its discovery in 1958 by Aaron B. Lerner and colleagues stemmed from the isolation of a substance from the pineal gland of cows that could induce skin lightening in common frogs. This compound was later identified as a hormone secreted in the brain during the night, playing a crucial role in regulating the sleep-wake cycle, also known as the circadian rhythm, in vertebrates.

<span class="mw-page-title-main">Reactive oxygen species</span> Highly reactive molecules formed from diatomic oxygen (O₂)

In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O2H), superoxide (O2-), hydroxyl radical (OH.), and singlet oxygen. ROS are pervasive because they are readily produced from O2, which is abundant. ROS are important in many ways, both beneficial and otherwise. ROS function as signals, that turn on and off biological functions. They are intermediates in the redox behavior of O2, which is central to fuel cells. ROS are central to the photodegradation of organic pollutants in the atmosphere. Most often however, ROS are discussed in a biological context, ranging from their effects on aging and their role in causing dangerous genetic mutations.

<span class="mw-page-title-main">Hydroxyl radical</span> Neutral form of the hydroxide ion (OH−)

The hydroxyl radical, HO, is the neutral form of the hydroxide ion (HO). Hydroxyl radicals are highly reactive and consequently short-lived; however, they form an important part of radical chemistry. Most notably hydroxyl radicals are produced from the decomposition of hydroperoxides (ROOH) or, in atmospheric chemistry, by the reaction of excited atomic oxygen with water. It is also an important radical formed in radiation chemistry, since it leads to the formation of hydrogen peroxide and oxygen, which can enhance corrosion and stress corrosion cracking in coolant systems subjected to radioactive environments. Hydroxyl radicals are also produced during UV-light dissociation of H2O2 (suggested in 1879) and likely in Fenton chemistry, where trace amounts of reduced transition metals catalyze peroxide-mediated oxidations of organic compounds.

Fenton's reagent is a solution of hydrogen peroxide (H2O2) and an iron catalyst (typically iron(II) sulfate, FeSO4). It is used to oxidize contaminants or waste water as part of an advanced oxidation process. Fenton's reagent can be used to destroy organic compounds such as trichloroethylene and tetrachloroethylene (perchloroethylene). It was developed in the 1890s by Henry John Horstman Fenton as an analytical reagent.

<span class="mw-page-title-main">Antioxidant effect of polyphenols and natural phenols</span>

A polyphenol antioxidant is a hypothetized type of antioxidant, in which each instance would contain a polyphenolic substructure; such instances which have been studied in vitro. Numbering over 4,000 distinct chemical structures, such polyphenols may have antioxidant activity {{{1}}} in vitro (although they are unlikely to be antioxidants in vivo). Hypothetically, they may affect cell-to-cell signaling, receptor sensitivity, inflammatory enzyme activity or gene regulation, although high-quality clinical research has not confirmed any of these possible effects in humans as of 2020.

<span class="mw-page-title-main">Acetylserotonin O-methyltransferase</span> Mammalian protein found in humans

N-Acetylserotonin O-methyltransferase, also known as ASMT, is an enzyme which catalyzes the final reaction in melatonin biosynthesis: converting Normelatonin to melatonin. This reaction is embedded in the more general tryptophan metabolism pathway. The enzyme also catalyzes a second reaction in tryptophan metabolism: the conversion of 5-hydroxy-indoleacetate to 5-methoxy-indoleacetate. The other enzyme which catalyzes this reaction is n-acetylserotonin-o-methyltransferase-like-protein.

Polymer stabilizers are chemical additives which may be added to polymeric materials, such as plastics and rubbers, to inhibit or retard their degradation. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour.

<span class="mw-page-title-main">Pinoline</span> Chemical compound

Pinoline is a methoxylated tryptoline (5-methoxytryptoline) long claimed to be produced in the pineal gland during the metabolism of melatonin, however its pineal occurrence remains controversial. Its IUPAC name is 6-methoxy-1,2,3,4-tetrahydro-β-carboline, usually abbreviated as 6-MeO-THBC, and its more common name is a combination of "pineal beta-carboline". The biological activity of this molecule is of interest as a potential free radical scavenger, also known as an antioxidant, and as a monoamine oxidase A inhibitor.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an organic compound with the formula C6H4CCNH3. Indole is classified as an aromatic heterocycle. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indoles are derivatives of indole where one or more of the hydrogen atoms have been replaced by substituent groups. Indoles are widely distributed in nature, most notably as amino acid tryptophan and neurotransmitter serotonin.

<i>Clostridium sporogenes</i> Species of bacterium

Clostridium sporogenes is a species of Gram-positive bacteria that belongs to the genus Clostridium. Like other strains of Clostridium, it is an anaerobic, rod-shaped bacterium that produces oval, subterminal endospores and is commonly found in soil. Unlike Clostridium botulinum, it does not produce the botulinum neurotoxins. In colonized animals, it has a mutualistic rather than pathogenic interaction with the host.

<span class="mw-page-title-main">Gut–brain axis</span> Biochemical signaling between the gastrointestinal tract and the central nervous system

The gut–brain axis is the two-way biochemical signaling that takes place between the gastrointestinal tract and the central nervous system (CNS). The "microbiota–gut–brain axis" includes the role of gut microbiota in the biochemical signaling events that take place between the GI tract and the CNS. Broadly defined, the gut–brain axis includes the central nervous system, neuroendocrine system, neuroimmune systems, the hypothalamic–pituitary–adrenal axis, sympathetic and parasympathetic arms of the autonomic nervous system, the enteric nervous system, vagus nerve, and the gut microbiota.

<span class="mw-page-title-main">6-Hydroxymelatonin</span> Chemical compound

6-Hydroxymelatonin (6-OHM) is a naturally occurring, endogenous, major active metabolite of melatonin. Similar to melatonin, 6-OHM is a full agonist of the MT1 and MT2 receptors. It is also an antioxidant and neuroprotective, and is even more potent in this regard relative to melatonin.

<span class="mw-page-title-main">3-Indolepropionic acid</span> Chemical compound

3-Indolepropionic acid (IPA), or indole-3-propionic acid, has been studied for its therapeutic value in the treatment of Alzheimer's disease. As of 2022 IPA shows potential in the treatment of this disease, though the therapeutic effect of IPA depends on dose and time of therapy initiation.

Barry Halliwell is an English biochemist, chemist and university administrator, specialising in free radical metabolism in both animals and plants. His name is included in the "Foyer–Halliwell–Asada" pathway, a cellular process of hydrogen peroxide metabolism in plants and animals, named for the three principal discoverers, with Christine Foyer and Kozi Asada. He moved to Singapore in 2000, and served as Deputy President of the National University of Singapore (2006–15), where he continues to hold a Tan Chin Tuan Centennial professorship.

<span class="mw-page-title-main">Indoxyl sulfate</span> Chemical compound

Indoxyl sulfate, also known as 3-indoxylsulfate and 3-indoxylsulfuric acid, is a metabolite of dietary L-tryptophan that acts as a cardiotoxin and uremic toxin. High concentrations of indoxyl sulfate in blood plasma are known to be associated with the development and progression of chronic kidney disease and vascular disease in humans. As a uremic toxin, it stimulates glomerular sclerosis and renal interstitial fibrosis.

<span class="mw-page-title-main">Indole-3-carbaldehyde</span> Chemical compound

Indole-3-carbaldehyde (I3A), also known as indole-3-aldehyde and 3-formylindole, is a metabolite of dietary L-tryptophan which is synthesized by human gastrointestinal bacteria, particularly species of the Lactobacillus genus. I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells, in turn stimulating the production of interleukin-22 which facilitates mucosal reactivity.

<span class="mw-page-title-main">Melatonin as a medication and supplement</span> Supplement and medication used to treat sleep disorders

Melatonin is a dietary supplement and medication as well as naturally occurring hormone. As a hormone, melatonin is released by the pineal gland and is involved in sleep–wake cycles. As a supplement, it is often used for the attempted short-term treatment of disrupted sleep patterns, such as from jet lag or shift work, and is typically taken orally. Evidence of its benefit for this use, however, is not strong. A 2017 review found that sleep onset occurred six minutes faster with use, but found no change in total time asleep.

<i>N1</i>-Acetyl-5-methoxykynuramine Metabolite of melatonin

N1-Acetyl-5-methoxykynuramine (AMK) is a metabolite of melatonin that could improve memory by acting on the melatonin receptors. It significantly increased the phosphorylation of both ERK and CREB in the hippocampus. It also helps scavenge free radicals.

References

  1. Tan, Dun-Xian; Hardeland, R.; Manchester, L. C.; Galano, A.; Reiter, R. J. (May 11, 2014). "Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions". Current Medicinal Chemistry. 21 (13): 1557–1565. doi:10.2174/0929867321666131129113146. PMID   24304286 via PubMed.
  2. Tan, Dun-Xian; Manchester, LucienC.; Reiter, RusselJ.; Plummer, BenjaminF. (March 19, 1999). "Cyclic 3-Hydroxymelatonin: A Melatonin Metabolite Generated as a Result of Hydroxyl Radical Scavenging". Biological Signals and Receptors. 8 (1–2): 70–74. doi:10.1159/000014571. PMID   10085465 via Silverchair.