5-Hydroxyindoleacetaldehyde

Last updated
5-Hydroxyindoleacetaldehyde
5-Hydroxyindolacetaldehyd.svg
Names
IUPAC name
2-(5-hydroxy-1H-indol-3-yl)acetaldehyde
Other names
5-Hydroxyindole-acetaldehyde; 5-HIAL; 5-HIAAL; 5-Hydroxytryptaldehyde; 5-Hydroxyindole-3-acetaldehyde; Serotonin aldehyde [1]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C10H9NO2/c12-4-3-7-6-11-10-2-1-8(13)5-9(7)10/h1-2,4-6,11,13H,3H2
    Key: OBFAPCIUSYHFIE-UHFFFAOYSA-N
  • C1=CC2=C(C=C1O)C(=CN2)CC=O
Properties
C10H9NO2
Molar mass 175.18 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

5-Hydroxyindoleacetaldehyde (5-HIAL), also known as 5-hydroxytryptaldehyde or as serotonin aldehyde, is an inactive metabolite and metabolic intermediate of the monoamine neurotransmitter serotonin (5-hydroxytryptamine; 5-HT). [2] [3] [1]

5-HIAL is formed from serotonin by oxidative deamination via monoamine oxidase (MAO). [2] [3] MAO-mediated deamination is the primary metabolic pathway of serotonin inactivation. [2] Monoamine oxidase A (MAO-A) has about 120-fold higher affinity for serotonin than monoamine oxidase B (MAO-B). [2] In relation to this, MAO-A is the main isozyme of MAO involved in serotonin degradation. [2]

Following its formation, 5-HIAL is metabolized by aldehyde dehydrogenase (ALDH) to form 5-hydroxyindoleacetic acid (5-HIAA). [2] [3] 5-HIAL can also be converted into small amounts of 5-hydroxytryptophol (5-HTOL; also known as 5-hydroxyindolethanol or 5-HIET) by either aldehyde reductase (ALR/ALDR) or alcohol dehydrogenase (ADH). [2] [4] However, brain concentrations of 5-HTOL are only 1 to 5% of those of 5-HIAA. [2] [4]

Use of ethanol (alcohol) can dramatically increase 5-HTOL formation by inhibiting ALDH and enhancing ADH activity. [2] [5] As a result, the ratio of 5-HTOL to 5-HIAA is a sensitive and reliable marker of recent ethanol ingestion and has been suggested for use in clinical and forensic contexts. [2] [5]

Besides oxidative deamination by MAO into 5-HIAL, serotonin can also be conjugated by glucuronidation via glucuronyltransferases, conjugated by sulfation via sulfotransferases, acetylated and then methylated into melatonin (N-acetyl-5-methoxytryptamine) (which occurs mainly in the pineal gland), and converted into certain other metabolites like 5-hydroxyindole thiazoladine carboxylic acid (5-HITCA). [2] However, these secondary metabolic pathways appear to play only a minor role in serotonin metabolism. [2]

5-HIAL has been implicated in producing neurotoxicity and in the development and progression of neurodegenerative diseases. [6] [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Monoamine oxidase</span> Family of enzymes

Monoamine oxidases (MAO) are a family of enzymes that catalyze the oxidation of monoamines, employing oxygen to clip off their amine group. They are found bound to the outer membrane of mitochondria in most cell types of the body. The first such enzyme was discovered in 1928 by Mary Bernheim in the liver and was named tyramine oxidase. The MAOs belong to the protein family of flavin-containing amine oxidoreductases.

A dehydrogenase is an enzyme belonging to the group of oxidoreductases that oxidizes a substrate by reducing an electron acceptor, usually NAD+/NADP+ or a flavin coenzyme such as FAD or FMN. Like all catalysts, they catalyze reverse as well as forward reactions, and in some cases this has physiological significance: for example, alcohol dehydrogenase catalyzes the oxidation of ethanol to acetaldehyde in animals, but in yeast it catalyzes the production of ethanol from acetaldehyde.

<span class="mw-page-title-main">Alcohol dehydrogenase</span> Group of dehydrogenase enzymes

Alcohol dehydrogenases (ADH) (EC 1.1.1.1) are a group of dehydrogenase enzymes that occur in many organisms and facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of nicotinamide adenine dinucleotide (NAD+) to NADH. In humans and many other animals, they serve to break down alcohols that are otherwise toxic, and they also participate in the generation of useful aldehyde, ketone, or alcohol groups during the biosynthesis of various metabolites. In yeast, plants, and many bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD+.

<span class="mw-page-title-main">Catecholamine</span> Class of chemical compounds

A catecholamine is a monoamine neurotransmitter, an organic compound that has a catechol and a side-chain amine.

<span class="mw-page-title-main">Disulfiram</span> Chemical compound

Disulfiram is a medication used to support the treatment of chronic alcoholism by producing an acute sensitivity to ethanol. Disulfiram works by inhibiting the enzyme aldehyde dehydrogenase, causing many of the effects of a hangover to be felt immediately following alcohol consumption. Disulfiram plus alcohol, even small amounts, produces flushing, throbbing in the head and neck, a throbbing headache, respiratory difficulty, nausea, copious vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, fast heart rate, low blood pressure, fainting, marked uneasiness, weakness, vertigo, blurred vision, and confusion. In severe reactions there may be respiratory depression, cardiovascular collapse, abnormal heart rhythms, heart attack, acute congestive heart failure, unconsciousness, convulsions, and death.

<span class="mw-page-title-main">Phenethylamine</span> Organic compound, a stimulant in humans

Phenethylamine (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans. In the brain, phenethylamine regulates monoamine neurotransmission by binding to trace amine-associated receptor 1 (TAAR1) and inhibiting vesicular monoamine transporter 2 (VMAT2) in monoamine neurons. To a lesser extent, it also acts as a neurotransmitter in the human central nervous system. In mammals, phenethylamine is produced from the amino acid L-phenylalanine by the enzyme aromatic L-amino acid decarboxylase via enzymatic decarboxylation. In addition to its presence in mammals, phenethylamine is found in many other organisms and foods, such as chocolate, especially after microbial fermentation.

<span class="mw-page-title-main">Alcohol flush reaction</span> Effect of alcohol consumption on the human body

Alcohol flush reaction is a condition in which a person develops flushes or blotches associated with erythema on the face, neck, shoulders, ears, and in some cases, the entire body after consuming alcoholic beverages. The reaction is the result of an accumulation of acetaldehyde, a metabolic byproduct of the catabolic metabolism of alcohol, and is caused by an aldehyde dehydrogenase 2 deficiency.

<span class="mw-page-title-main">Moclobemide</span> Antidepressant

Moclobemide, sold under the brand names Amira, Aurorix, Clobemix, Depnil and Manerix among others, is a reversible inhibitor of monoamine oxidase A (RIMA) drug primarily used to treat depression and social anxiety. It is not approved for use in the United States, but is approved in other Western countries such as Canada, the UK and Australia. It is produced by affiliates of the Hoffmann–La Roche pharmaceutical company. Initially, Aurorix was also marketed by Roche in South Africa, but was withdrawn after its patent rights expired and Cipla Medpro's Depnil and Pharma Dynamic's Clorix became available at half the cost.

<span class="mw-page-title-main">Fomepizole</span> Medication

Fomepizole, also known as 4-methylpyrazole, is a medication used to treat methanol and ethylene glycol poisoning. It may be used alone or together with hemodialysis. It is given by injection into a vein.

<span class="mw-page-title-main">Iproniazid</span> Antidepressant

Iproniazid is a non-selective, irreversible monoamine oxidase inhibitor (MAOI) of the hydrazine class. It is a xenobiotic that was originally designed to treat tuberculosis, but was later most prominently used as an antidepressant drug. However, it was withdrawn from the market because of its hepatotoxicity. The medical use of iproniazid was discontinued in most of the world in the 1960s, but remained in use in France until its discontinuation in 2015.

<span class="mw-page-title-main">Aldehyde dehydrogenase</span> Group of enzymes

Aldehyde dehydrogenases are a group of enzymes that catalyse the oxidation of aldehydes. They convert aldehydes to carboxylic acids. The oxygen comes from a water molecule. To date, nineteen ALDH genes have been identified within the human genome. These genes participate in a wide variety of biological processes including the detoxification of exogenously and endogenously generated aldehydes.

<span class="mw-page-title-main">Monoamine oxidase A</span> Endogenous enzyme

Monoamine oxidase A, also known as MAO-A, is an enzyme that in humans is encoded by the MAOA gene. This gene is one of two neighboring gene family members that encode mitochondrial enzymes which catalyze the oxidative deamination of amines, such as dopamine, norepinephrine, and serotonin. A mutation of this gene results in Brunner syndrome. This gene has also been associated with a variety of other psychiatric disorders, including antisocial behavior. Alternatively spliced transcript variants encoding multiple isoforms have been observed.

<span class="mw-page-title-main">Pargyline</span> Chemical compound

Pargyline, sold under the brand name Eutonyl among others, is a monoamine oxidase inhibitor (MAOI) medication which has been used to treat hypertension but is no longer marketed. It has also been studied as an antidepressant, but was never licensed for use in the treatment of depression. The drug is taken by mouth.

Oxidative deamination is a form of deamination that generates α-keto acids and other oxidized products from amine-containing compounds, and occurs primarily in the liver. Oxidative deamination is stereospecific, meaning it contains different stereoisomers as reactants and products; this process is either catalyzed by L or D- amino acid oxidase and L-amino acid oxidase is present only in the liver and kidney. Oxidative deamination is an important step in the catabolism of amino acids, generating a more metabolizable form of the amino acid, and also generating ammonia as a toxic byproduct. The ammonia generated in this process can then be neutralized into urea via the urea cycle.

<span class="mw-page-title-main">Monoamine oxidase B</span> Protein-coding gene in the species Homo sapiens

Monoamine oxidase B, also known as MAO-B, is an enzyme that in humans is encoded by the MAOB gene.

<span class="mw-page-title-main">3,4-Dihydroxyphenylacetaldehyde</span> Chemical compound

3,4-Dihydroxyphenylacetaldehyde (DOPAL), also known as dopamine aldehyde, is a metabolite of the monoamine neurotransmitter dopamine formed by monoamine oxidase (MAO).

<span class="mw-page-title-main">Methanol toxicity</span> Medical condition

Methanol toxicity is poisoning from methanol, characteristically via ingestion. Symptoms may include a decreased level of consciousness, poor or no coordination, vomiting, abdominal pain, and a specific smell on the breath. Decreased vision may start as early as twelve hours after exposure. Long-term outcomes may include blindness and kidney failure. Blindness may occur after drinking as little as 10 mL; death may occur after drinking quantities over 15 mL.

<span class="mw-page-title-main">Carboxycyclophosphamide</span> Chemical compound

Carboxycyclophosphamide is an inactive metabolite of the cytotoxic antineoplastic drug cyclophosphamide. In the metabolic pathway of cyclophosphamide inactivation it first metabolizes to 4-hydroxycyclophosphamide, then partially tautomerizes into aldophosphamide. Aldophosphamide then, in turn, is oxidized into carboxycyclophosphamide by the enzyme ALDH.

<span class="mw-page-title-main">4-Hydroxyphenylacetaldehyde</span> Chemical compound

4-Hydroxyphenylacetaldehyde, also known as p-hydroxyphenylacetaldehyde, is a natural product with the formula HOC6H4CH2CHO. It is a derivative of phenylacetaldehyde and occurs as a white solid at room temperature.

<span class="mw-page-title-main">Pharmacology of selegiline</span> Pharmacology of the antiparkinsonian and antidepressant selegiline

The pharmacology of selegiline is the study of the pharmacodynamic and pharmacokinetic properties of the antiparkinsonian and antidepressant selegiline (L-deprenyl). Selegiline is available in a few different forms, including oral tablets and capsules, orally disintegrating tablets (ODTs), and transdermal patches. These forms have differing pharmacological properties.

References

  1. 1 2 Jinsmaa Y, Cooney A, Sullivan P, Sharabi Y, Goldstein DS (March 2015). "The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein". Neurosci Lett. 590: 134–137. doi:10.1016/j.neulet.2015.01.064. PMC   4755587 . PMID   25637699.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Bortolato, Marco; Chen, Kevin; Shih, Jean C. (2010). "The Degradation of Serotonin: Role of MAO". Handbook of Behavioral Neuroscience. Vol. 21. Elsevier. pp. 203–218. doi:10.1016/s1569-7339(10)70079-5. ISBN   978-0-12-374634-4.
  3. 1 2 3 Matthes S, Mosienko V, Bashammakh S, Alenina N, Bader M (2010). "Tryptophan hydroxylase as novel target for the treatment of depressive disorders". Pharmacology. 85 (2): 95–109. doi:10.1159/000279322. PMID   20130443.
  4. 1 2 Bortolato M, Shih JC (2011). "Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence". Int Rev Neurobiol. International Review of Neurobiology. 100: 13–42. doi:10.1016/B978-0-12-386467-3.00002-9. ISBN   978-0-12-386467-3. PMC   3371272 . PMID   21971001.
  5. 1 2 Beck O, Helander A (December 2003). "5-hydroxytryptophol as a marker for recent alcohol intake". Addiction. 98 Suppl 2: 63–72. doi:10.1046/j.1359-6357.2003.00583.x. PMID   14984243.
  6. Cagle BS, Crawford RA, Doorn JA (February 2019). "Biogenic Aldehyde-Mediated Mechanisms of Toxicity in Neurodegenerative Disease". Curr Opin Toxicol. 13: 16–21. Bibcode:2019COTox..13...16C. doi:10.1016/j.cotox.2018.12.002. PMC   6625780 . PMID   31304429.
  7. Matveychuk D, MacKenzie EM, Kumpula D, Song MS, Holt A, Kar S, Todd KG, Wood PL, Baker GB (January 2022). "Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine". Cell Mol Neurobiol. 42 (1): 225–242. doi:10.1007/s10571-021-01078-3. PMC   8732914 . PMID   33839994.
  8. Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG (June 2021). "Role of Monoamine Oxidase Activity in Alzheimer's Disease: An Insight into the Therapeutic Potential of Inhibitors". Molecules. 26 (12): 3724. doi: 10.3390/molecules26123724 . PMC   8234097 . PMID   34207264.