Xylamine

Last updated
Xylamine
Xylamine.svg
Clinical data
Other namesN-2-Chloroethyl-N-ethyl-2-methylbenzylamine
Identifiers
  • 2-chloro-N-ethyl-N-[(2-methylphenyl)methyl]ethanamine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C12H18ClN
Molar mass 211.73 g·mol−1
3D model (JSmol)
  • CCN(CCCl)CC1=CC=CC=C1C
  • InChI=1S/C12H18ClN/c1-3-14(9-8-13)10-12-7-5-4-6-11(12)2/h4-7H,3,8-10H2,1-2H3
  • Key:XHRCFGDFESIFRG-UHFFFAOYSA-N

Xylamine is a monoaminergic neurotoxin and benzylamine derivative that is closely related to DSP-4. [1] [2] It is a relatively selective noradrenergic neurotoxin, which is attributed to its high affinity for the norepinephrine transporter (NET). [1] DSP-4 is generally preferred over xylamine for use in scientific research and hence xylamine is limitedly employed. [1] Xylamine was first described in 1975. [2] [3]

Related Research Articles

<span class="mw-page-title-main">Neurotoxin</span> Toxin harmful to nervous tissue

Neurotoxins are toxins that are destructive to nerve tissue. Neurotoxins are an extensive class of exogenous chemical neurological insults that can adversely affect function in both developing and mature nervous tissue. The term can also be used to classify endogenous compounds, which, when abnormally contacted, can prove neurologically toxic. Though neurotoxins are often neurologically destructive, their ability to specifically target neural components is important in the study of nervous systems. Common examples of neurotoxins include lead, ethanol, glutamate, nitric oxide, botulinum toxin, tetanus toxin, and tetrodotoxin. Some substances such as nitric oxide and glutamate are in fact essential for proper function of the body and only exert neurotoxic effects at excessive concentrations.

<span class="mw-page-title-main">MPTP</span> Chemical compound

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is an organic compound. It is classified as a tetrahydropyridine. It is of interest as a precursor to the monoaminergic neurotoxin MPP+, which causes permanent symptoms of Parkinson's disease by destroying dopaminergic neurons in the substantia nigra of the brain. It has been used to study disease models in various animals.

<span class="mw-page-title-main">Charybdotoxin</span> Chemical compound, scorpion neurotoxin

Charybdotoxin (ChTX) is a 37 amino acid neurotoxin from the venom of the scorpion Leiurus quinquestriatus hebraeus (deathstalker) that blocks calcium-activated potassium channels. This blockade causes hyperexcitability of the nervous system. It is a close homologue of agitoxin and both toxins come from Leiurus quinquestriatus hebraeus. It is named after Charybdis, a sea monster from Greek myth.

An autoreceptor is a type of receptor located in the membranes of nerve cells. It serves as part of a negative feedback loop in signal transduction. It is only sensitive to the neurotransmitters or hormones released by the neuron on which the autoreceptor sits. Similarly, a heteroreceptor is sensitive to neurotransmitters and hormones that are not released by the cell on which it sits. A given receptor can act as either an autoreceptor or a heteroreceptor, depending upon the type of transmitter released by the cell on which it is embedded.

<span class="mw-page-title-main">Lisuride</span> Chemical compound

Lisuride, sold under the brand name Dopergin among others, is a monoaminergic medication of the ergoline class which is used in the treatment of Parkinson's disease, migraine, and high prolactin levels. It is taken by mouth.

<span class="mw-page-title-main">DSP-4</span> Chemical compound

DSP-4, or N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, is a monoaminergic neurotoxin selective for noradrenergic neurons, capable of crossing the blood–brain barrier.

<span class="mw-page-title-main">Pargyline</span> Chemical compound

Pargyline, sold under the brand name Eutonyl among others, is a monoamine oxidase inhibitor (MAOI) medication which has been used to treat hypertension but is no longer marketed. It has also been studied as an antidepressant, but was never licensed for use in the treatment of depression. The drug is taken by mouth.

<span class="mw-page-title-main">Norepinephrine</span> Catecholamine hormone and neurotransmitter

Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as a hormone, neurotransmitter and neuromodulator. The name "noradrenaline" is more commonly used in the United Kingdom, whereas "norepinephrine" is usually preferred in the United States. "Norepinephrine" is also the international nonproprietary name given to the drug. Regardless of which name is used for the substance itself, parts of the body that produce or are affected by it are referred to as noradrenergic.

<span class="mw-page-title-main">Benzofuranylpropylaminopentane</span> Chemical compound

(–)-Benzofuranylpropylaminopentane is an experimental drug related to selegiline which acts as a monoaminergic activity enhancer (MAE). It is orally active in animals.

<span class="mw-page-title-main">Oxidopamine</span> Chemical compound

Oxidopamine, also known as 6-hydroxydopamine (6-OHDA) or 2,4,5-trihydroxyphenethylamine, is a synthetic monoaminergic neurotoxin used by researchers to selectively destroy dopaminergic and noradrenergic neurons in the brain.

<span class="mw-page-title-main">5,7-Dihydroxytryptamine</span> Chemical compound

5,7-Dihydroxytryptamine (5,7-DHT) is a monoaminergic neurotoxin used in scientific research to decrease concentrations of serotonin in the brain. The mechanism behind this effect is not well understood, but it is speculated to selectively destroy serotonergic neurons, in a manner similar to the dopaminergic neurotoxicity of 6-hydroxydopamine (6-OHDA). What is known is that this compound is in fact not selective in depleting serotonin content, but also depletes norepinephrine. To selectively deplete serotonin stores, it is commonly administered in conjunction with desmethylimipramine (desipramine), which inhibits the norepinephrine transporter.

<i>para</i>-Chloroamphetamine Chemical compound

para-Chloroamphetamine (PCA), also known as 4-chloroamphetamine (4-CA), is a substituted amphetamine and monoamine releaser similar to MDMA, but with substantially higher activity as a monoaminergic neurotoxin, thought to be due to the unrestrained release of both serotonin and dopamine by a metabolite. It is used as a neurotoxin by neurobiologists to selectively kill serotonergic neurons for research purposes, in the same way that 6-hydroxydopamine is used to kill dopaminergic neurons.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of a monoamine neurotransmitter from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitter. Many drugs induce their effects in the body and/or brain via the release of monoamine neurotransmitters, e.g., trace amines, many substituted amphetamines, and related compounds.

<span class="mw-page-title-main">Amiflamine</span> Chemical compound

Amiflamine (FLA-336) is a reversible inhibitor of monoamine oxidase A (MAO-A), thereby being a RIMA, and, to a lesser extent, semicarbazide-sensitive amine oxidase (SSAO), as well as a serotonin releasing agent (SRA). It is a derivative of the phenethylamine and amphetamine chemical classes. The (+)-enantiomer is the active stereoisomer.

<span class="mw-page-title-main">Fluparoxan</span> Chemical compound

Fluparoxan is a potent α2-adrenergic receptor antagonist with excellent selectivity for this receptor over the α1-adrenergic receptor (2,630-fold), and is the only well-studied α2-adrenergic receptor antagonist in its structural family which does not antagonize any variant of the imidazoline receptor. It was shown to possess central α2-adrenoceptor antagonist activity after oral doses in man and was patented as an antidepressant by Glaxo in the early 1980s, but its development was discontinued when the compound failed to show a clear clinical advantage over existing therapies.

Noradrenergic cell group A5 is a group of cells in the vicinity of the superior olivary complex in the pontine tegmentum that label for norepinephrine in primates, rodents and other mammals. The noradrenergic A5 pontine cell group receives inputs from the hypothalamus and several brainstem areas extending from the midbrain to the medulla. It has reciprocal connections with these areas. Its major output is to the spinal cord. These anatomical connections suggest a role in autonomic regulation and A5 has been implicated in control of heart rate, blood pressure and respiration. It may also be involved in modulation of pain as part of the descending mesencephalic to spinal cord system.

Noradrenergic cell groups refers to collections of neurons in the central nervous system that have been demonstrated by histochemical fluorescence to contain the neurotransmitter norepinephrine (noradrenalin). They are named

<span class="mw-page-title-main">Monoamine neurotoxin</span> Compounds that damage or destroy monoaminergic neurons

A monoamine neurotoxin, or monoaminergic neurotoxin, is a drug that selectively damages or destroys monoaminergic neurons. Monoaminergic neurons are neurons that signal via stimulation by monoamine neurotransmitters including serotonin, dopamine, and norepinephrine.

HPP<sup>+</sup> Monoaminergic neurotoxin related to MPTP and metabolites of haloperidol

HPP+, also known as haloperidol pyridinium, is a monoaminergic neurotoxin and a metabolite of haloperidol.

<span class="mw-page-title-main">5,6-Dihydroxytryptamine</span> A selective serotonergic neurotoxin used in scientific research

5,6-Dihydroxytryptamine (5,6-DHT) is a monoaminergic neurotoxin and tryptamine derivative related to serotonin (5-hydroxytryptamine) and 5,7-dihydroxytryptamine (5,7-DHT). It is a relatively selective serotonergic neurotoxin, but also acts as a dopaminergic and noradrenergic neurotoxin at higher doses. In addition, it produces widespread generalized toxicity at higher doses. Its selective serotonergic neurotoxicity is due to its high affinity for the serotonin transporter (SERT). Because of its SERT affinity, 5,6-DHT has activity as a serotonin reuptake inhibitor.

References

  1. 1 2 3 Kostrzewa RM (2022). "Survey of Selective Monoaminergic Neurotoxins Targeting Dopaminergic, Noradrenergic, and Serotoninergic Neurons". Handbook of Neurotoxicity. Cham: Springer International Publishing. pp. 159–198. doi:10.1007/978-3-031-15080-7_53. ISBN   978-3-031-15079-1.
  2. 1 2 Dudley MW, Howard BD, Cho AK (1990). "The interaction of the beta-haloethyl benzylamines, xylamine, and DSP-4 with catecholaminergic neurons". Annu Rev Pharmacol Toxicol. 30: 387–403. doi:10.1146/annurev.pa.30.040190.002131. PMID   2188573.
  3. Krueger CA, Cook DA (November 1975). "Synthesis and adrenergic neuron blocking properties of some alkylating analogues of bretylium". Arch Int Pharmacodyn Ther. 218 (1): 96–105. PMID   1212016.