Indole-3-acetaldehyde

Last updated
Indole-3-acetaldehyde
Indole-3-acetaldehyde.svg
Names
Preferred IUPAC name
(1H-Indol-3-yl)acetaldehyde
Other names
Indoleacetaldehyde; 1H-Indole-3-acetaldehyde; 2-(Indol-3-yl)acetaldehyde; Indole-3-acetaldehyde; Indoleacetaldehyde; 1H-Indol-3-ylacetaldehyde; 2-(3-Indolyl)acetaldehyde; Indol-3-ylacetaldehyde; Tryptaldehyde
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
MeSH C001655
PubChem CID
UNII
  • InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2
    Key: WHOOUMGHGSPMGR-UHFFFAOYSA-N
  • O=CCC1=CNC2=CC=CC=C12
Properties
C10H9NO
Molar mass 159.188 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Indole-3-acetaldehyde belongs to the class of organic compounds known as indoles. These are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole.

Indole-3-acetaldehyde is a substrate for retina-specific copper amine oxidase, aldehyde dehydrogenase X (mitochondrial), amine oxidase B, amiloride-sensitive amine oxidase, aldehyde dehydrogenase (mitochondrial), fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, aldehyde dehydrogenase (dimeric NADP-preferring), aldehyde dehydrogenase family 7 member A1, amine oxidase A, aldehyde dehydrogenase 1A3 and membrane copper amine oxidase. [1]

Related Research Articles

Aldehyde Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are common and play important roles in the technology and biological spheres.

A dehydrogenase is an enzyme belonging to the group of oxidoreductases that oxidizes a substrate by reducing an electron acceptor, usually NAD+/NADP+ or a flavin coenzyme such as FAD or FMN. Like all catalysts, they catalyze reverse as well as forward reactions, and in some cases this has physiological significance: for example, alcohol dehydrogenase catalyzes the oxidation of ethanol to acetaldehyde in animals, but in yeast it catalyzes the production of ethanol from acetaldehyde.

Acetaldehyde (IUPAC systematic name ethanal) is an organic chemical compound with the formula CH3CHO, sometimes abbreviated by chemists as MeCHO (Me = methyl). It is a colorless liquid or gas, boiling near room temperature. It is one of the most important aldehydes, occurring widely in nature and being produced on a large scale in industry. Acetaldehyde occurs naturally in coffee, bread, and ripe fruit, and is produced by plants. It is also produced by the partial oxidation of ethanol by the liver enzyme alcohol dehydrogenase and is a contributing cause of hangover after alcohol consumption. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Consumption of disulfiram inhibits acetaldehyde dehydrogenase, the enzyme responsible for the metabolism of acetaldehyde, thereby causing it to build up in the body.

Xanthine oxidase Class of enzymes

Xanthine oxidase is a form of xanthine oxidoreductase, a type of enzyme that generates reactive oxygen species. These enzymes catalyze the oxidation of hypoxanthine to xanthine and can further catalyze the oxidation of xanthine to uric acid. These enzymes play an important role in the catabolism of purines in some species, including humans.

Catecholamine Class of chemical compounds

A catecholamine is a monoamine neurotransmitter, an organic compound that has a catechol and a side-chain amine.

Disulfiram Chemical compound

Disulfiram is a medication used to support the treatment of chronic alcoholism by producing an acute sensitivity to ethanol. Disulfiram works by inhibiting the enzyme acetaldehyde dehydrogenase, causing many of the effects of a hangover to be felt immediately following alcohol consumption. Disulfiram plus alcohol, even small amounts, produces flushing, throbbing in the head and neck, a throbbing headache, respiratory difficulty, nausea, copious vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, fast heart rate, low blood pressure, fainting, marked uneasiness, weakness, vertigo, blurred vision, and confusion. In severe reactions there may be respiratory depression, cardiovascular collapse, abnormal heart rhythms, heart attack, acute congestive heart failure, unconsciousness, convulsions, and death.

Phenethylamine Organic compound, a stimulant in humans

Phenethylamine (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans. In the brain, phenethylamine regulates monoamine neurotransmission by binding to trace amine-associated receptor 1 (TAAR1) and inhibiting vesicular monoamine transporter 2 (VMAT2) in monoamine neurons. To a lesser extent, it also acts as a neurotransmitter in the human central nervous system. In mammals, phenethylamine is produced from the amino acid L-phenylalanine by the enzyme aromatic L-amino acid decarboxylase via enzymatic decarboxylation. In addition to its presence in mammals, phenethylamine is found in many other organisms and foods, such as chocolate, especially after microbial fermentation.

Acetaldehyde dehydrogenase Class of enzymes

Acetaldehyde dehydrogenases are dehydrogenase enzymes which catalyze the conversion of acetaldehyde into acetic acid. The oxidation of acetaldehyde to acetate can be summarized as follows:

Nitro compound Organic compounds that contain one or more nitro functional groups

Nitro compounds are organic compounds that contain one or more nitro functional groups. The nitro group is one of the most common explosophores used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.

Aldehyde dehydrogenase Group of enzymes

Aldehyde dehydrogenases are a group of enzymes that catalyse the oxidation of aldehydes. They convert aldehydes to carboxylic acids. The oxygen comes from a water molecule. To date, nineteen ALDH genes have been identified within the human genome. These genes participate in a wide variety of biological processes including the detoxification of exogenously and endogenously generated aldehydes.

ALDH2 Enzyme

Aldehyde dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the ALDH2 gene located on chromosome 12. This protein belongs to the aldehyde dehydrogenase family of enzymes. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. Two major liver isoforms of aldehyde dehydrogenase, cytosolic and mitochondrial, can be distinguished by their electrophoretic mobilities, kinetic properties, and subcellular localizations.

Aldehyde oxidase Enzyme

Aldehyde oxidase (AO) is a metabolizing enzyme, located in the cytosolic compartment of tissues in many organisms. AO catalyzes the oxidation of aldehydes into carboxylic acid, and in addition, catalyzes the hydroxylation of some heterocycles. It can also catalyze the oxidation of both cytochrome P450 (CYP450) and monoamine oxidase (MAO) intermediate products. AO plays an important role in the metabolism of several drugs.

Amine Dehydrogenase, also known as methylamine dehydrogenase (MADH), is a tryptophan tryptophylquinone-dependent (TTQ-dependent) enzyme that catalyzes the oxidative deamination of a primary amine to an aldehyde and ammonia. The reaction occurs as follows:

In enzymology, an indole-3-acetaldehyde oxidase (EC 1.2.3.7) is an enzyme that catalyzes the chemical reaction

Amine oxidase (copper-containing)

Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes which includes both primary-amine oxidase and diamine oxidase; these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. They act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor:

Coprine Chemical compound

Coprine is a mycotoxin. It was first isolated from common inkcap. It occurs in mushrooms in the genera Coprinopsis When combined with alcohol, it causes "Coprinus syndrome". It inhibits the enzyme acetaldehyde dehydrogenase, which is involved in the metabolism of alcohol. This inhibition leads to a buildup of acetaldehyde, causing an alcohol flush reaction. Because of this, the mushroom is commonly referred to as Tippler's Bane.

3,4-Dihydroxyphenylacetaldehyde Chemical compound

3,4-Dihydroxyphenylacetaldehyde (DOPAL) is an important metabolite of the major brain neurotransmitter dopamine. All of the enzymatic metabolism of dopamine in neurons passes through DOPAL. According to the "catecholaldehyde hypothesis," DOPAL plays a role in the pathogenesis of Parkinson's disease. DOPAL has been chemically synthesized. DOPAL is detoxified mainly by aldehyde dehydrogenase. DOPAL is a metabolite of dopamine by monoamine oxidase activity, or MAO, in differentiated neuronal cells of the PC12 line. Physiological concentrations of DOPAL in isolated mitochondria were highly potent in inducing a pathway associated with programmed cell death, permeability transition. This suggests the cytotoxity of DOPAL and its role in the progression of Parkinson's disease, which has long been associated with mitochondrial abnormalities and neurotoxicity by way of dopaminergic compounds, while reducing the emphasis on other dopamine derivatives and metabolites.

Tryptophol Chemical compound

Tryptophol is an aromatic alcohol that induces sleep in humans. It is found in wine as a secondary product of ethanol fermentation. It was first described by Felix Ehrlich in 1912. It is also produced by the trypanosomal parasite in sleeping sickness.

4-Hydroxyphenylacetaldehyde Chemical compound

4-Hydroxyphenylacetaldehyde, also known as p-hydroxyphenylacetaldehyde, is a natural product with the formula HOC6H4CH2CHO. It is a derivative of phenylacetaldehyde and occurs as a white solid at room temperature.

References

  1. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2016). "Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum". Arch Microbiol. 198 (5): 429–37. doi:10.1007/s00203-016-1202-z.