Amine oxidase (copper-containing)

Last updated
amine oxidase
Identifiers
EC no. 1.4.3.6
CAS no. 9001-53-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Copper amine oxidase, enzyme domain
3LOY.pdb.png
Crystal structure of a copper-containing benzylamine oxidase from Hansenula polymorpha . [1]
Identifiers
SymbolCu_amine_oxid
Pfam PF01179
InterPro IPR015798
PROSITE PDOC00895
SCOP2 1oac / SCOPe / SUPFAM
Membranome 252
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Copper amine oxidase N-terminal domain
PDB 1d6u EBI.jpg
crystal structure of e. coli amine oxidase anaerobically reduced with beta-phenylethylamine
Identifiers
SymbolCu_amine_oxidN1
Pfam PF07833
InterPro IPR012854
SCOP2 1spu / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Copper amine oxidase, N2 domain
PDB 1ksi EBI.jpg
crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2a resolution
Identifiers
SymbolCu_amine_oxidN2
Pfam PF02727
Pfam clan CL0047
InterPro IPR015800
PROSITE PDOC00895
SCOP2 1oac / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Copper amine oxidase, N3 domain
PDB 2oqe EBI.jpg
crystal structure of hansenula polymorpha amine oxidase in complex with xe to 1.6 angstroms
Identifiers
SymbolCu_amine_oxidN3
Pfam PF02728
Pfam clan CL0047
InterPro IPR015802
PROSITE PDOC00895
SCOP2 1oac / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes which includes both primary-amine oxidase and diamine oxidase; these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. They act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor: [2]

Contents

RCH2NH2 + H2O + O2 RCHO + NH3 + H2O2

The 3 substrates of this enzyme are primary amines (RCH2NH2), H2O, and O2, whereas its 3 products are RCHO, NH3, and H2O2.

Copper-containing amine oxidases are found in bacteria, fungi, plants and animals. In prokaryotes, the enzyme enables various amine substrates to be used as sources of carbon and nitrogen. [3] [4]

This enzyme belongs to oxidoreductases, specifically those acting on the CH-NH2 group of donors with oxygen as acceptor. The systematic name of this enzyme class is amine:oxygen oxidoreductase (deaminating) (copper-containing). This enzyme participates in 8 metabolic pathways: urea cycle and metabolism of amino groups, glycine, serine and threonine metabolism, histidine metabolism, tyrosine metabolism, phenylalanine metabolism, tryptophan metabolism, beta-alanine metabolism, and alkaloid biosynthesis ii. It has 2 cofactors: copper, and PQQ.

Structure

The copper amine oxidase 3-dimensional structure was determined through X-ray crystallography. [1] The copper amine oxidases occur as mushroom-shaped homodimers of 70-95 kDa, each monomer containing a copper ion and a covalently bound redox cofactor, topaquinone (TPQ). TPQ is formed by post-translational modification of a conserved tyrosine residue. The copper ion is coordinated with three histidine residues and two water molecules in a distorted square pyramidal geometry, and has a dual function in catalysis and TPQ biogenesis. The catalytic domain is the largest of the 3-4 domains found in copper amine oxidases, and consists of a beta sandwich of 18 strands in two sheets. The active site is buried and requires a conformational change to allow the substrate access.

The N2 and N3 N-terminal domains share a common structural fold, its core consisting of alpha-beta(4), where the helix is packed against the coiled anti-parallel beta-sheets. An additional domain is found at the N-terminal of some copper amine oxidases, as well as in related proteins such as cell wall hydrolase and N-acetylmuramoyl-L-alanine amidase. This domain consists of a five-stranded antiparallel beta-sheet twisted around an alpha helix. [5] [6]

Function

In eukaryotes they have a broader range of functions, including cell differentiation and growth, wound healing, detoxification and cell signalling; [7] one AOC enzyme (AOC3) functions as a vascular adhesion protein (VAP-1) in some mammalian tissues. [1]

Human proteins containing this domain

See also

Related Research Articles

In enzymology, a fructose 5-dehydrogenase (NADP+) (EC 1.1.1.124) is an enzyme that catalyzes the chemical reaction

In enzymology, a gluconate 2-dehydrogenase (EC 1.1.1.215) is an enzyme that catalyzes the chemical reaction

In enzymology, a choline dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acylhexosamine oxidase (EC 1.1.3.29) is an enzyme that catalyzes the chemical reaction

In enzymology, a secondary-alcohol oxidase (EC 1.1.3.18) is an enzyme that catalyzes the chemical reaction

In enzymology, an aldehyde dehydrogenase (pyrroloquinoline-quinone) (EC 1.2.99.3) is an enzyme that catalyzes the chemical reaction

In enzymology, a dimethylglycine oxidase (EC 1.5.3.10) is an enzyme that catalyzes the chemical reaction

In enzymology, a glutathione oxidase (EC 1.8.3.3) is an enzyme that catalyzes the chemical reaction

In enzymology, a beta-diketone hydrolase (EC 3.7.1.7) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Methylisocitrate lyase</span> Enzyme

The enzyme methylisocitrate lyase catalyzes the chemical reaction

In enzymology, a dethiobiotin synthase (EC 6.3.3.3) is an enzyme that catalyzes the chemical reaction

In enzymology, a glutamate—ethylamine ligase (EC 6.3.1.6) is an enzyme that catalyzes the chemical reaction

The enzyme α-amino-acid esterase (EC 3.1.1.43) catalyzes the reaction

<span class="mw-page-title-main">Creatininase</span>

In enzymology, a creatininase (EC 3.5.2.10) is an enzyme that catalyses the hydrolysis of creatinine to creatine, which can then be metabolised to urea and sarcosine by creatinase.

In enzymology, a cyanoalanine nitrilase (EC 3.5.5.4) is an enzyme that catalyzes the chemical reaction

In enzymology, a guanidinobutyrase (EC 3.5.3.7) is an enzyme that catalyzes the chemical reaction

In enzymology, an adenosylmethionine-8-amino-7-oxononanoate transaminase is an enzyme that catalyzes the chemical reaction

Nucleoside oxidase (EC 1.1.3.28) is an enzyme with systematic name nucleoside:oxygen 5'-oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Primary-amine oxidase</span>

Primary-amine oxidase, also known as semicarbazide-sensitive amine oxidase (SSAO), is an enzyme (EC 1.4.3.21) with the systematic name primary-amine:oxygen oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction

Rhodotorulapepsin is an enzyme. This enzyme catalyses the following chemical reaction

References

  1. 1 2 3 PDB: 3LOY ; Chang CM, Klema VJ, Johnson BJ, Mure M, Klinman JP, Wilmot CM (March 2010). "Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha". Biochemistry. 49 (11): 2540–50. doi:10.1021/bi901933d. PMC   2851405 . PMID   20155950.
  2. Convery MA, Phillips SE, McPherson MJ, Yadav KD, Knowles PF, Parsons MR, Wilmot CM, Blakeley V, Corner AS (1995). "Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution". Structure. 3 (11): 1171–1184. doi: 10.1016/s0969-2126(01)00253-2 . PMID   8591028.
  3. Murray JM, Convery MA, Phillips SE, McPherson MJ, Knowles PF, Parsons MR, Wilmot CM, Blakeley V, Corner AS, Alton G, Palcic MM (1997). "Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction". Biochemistry. 36 (7): 1608–1620. doi:10.1021/bi962205j. PMID   9048544.
  4. Tanizawa K, Guss JM, Freeman HC, Yamaguchi H, Wilce MC, Dooley DM, Matsunami H, Mcintire WS, Ruggiero CE (1997). "Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone". Biochemistry. 36 (51): 16116–16133. doi:10.1021/bi971797i. PMID   9405045.
  5. Parsons MR, Convery MA, Wilmot CM, Yadav KD, Blakeley V, Corner AS, Phillips SE, McPherson MJ, Knowles PF (November 1995). "Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution". Structure. 3 (11): 1171–84. doi: 10.1016/s0969-2126(01)00253-2 . PMID   8591028.
  6. Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SE (November 1999). "Visualization of dioxygen bound to copper during enzyme catalysis". Science. 286 (5445): 1724–8. doi:10.1126/science.286.5445.1724. PMID   10576737.
  7. Guss JM, Freeman HC, Kumar V, Wilce MC, Dooley DM, Harvey I, Mcguirl MA, Zubak VM (1996). "Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution". Structure. 4 (8): 943–955. doi: 10.1016/s0969-2126(96)00101-3 . PMID   8805580.

Further reading