Copper proteins are proteins that contain one or more copper ions as prosthetic groups. Copper proteins are found in all forms of air-breathing life. These proteins are usually associated with electron-transfer with or without the involvement of oxygen (O2). Some organisms even use copper proteins to carry oxygen instead of iron proteins. A prominent copper protein in humans is in cytochrome c oxidase (cco). This enzyme cco mediates the controlled combustion that produces ATP. [1] Other copper proteins include some superoxide dismutases used in defense against free radicals, peptidyl-α-monooxygenase for the production of hormones, and tyrosinase, which affects skin pigmentation. [2]
The metal centers in the copper proteins can be classified into several types: [3]
The blue copper proteins owe their name to their intense blue coloration (Cu(II)). The blue copper protein often called as "moonlighting protein", which means a protein can perform more than one function. They serve as electron transfer agents, with the active site shuttling between Cu(I) and Cu(II). The Cu2+ in the oxidized state can accept one electron to form Cu1+ in the reduced protein. The geometry of the Cu center has a major impact on its redox properties. The Jahn-Teller distortion does not apply to the blue copper proteins because the copper site has low symmetry that does not support degeneracy in the d-orbital manifold. The absence of large reorganizational changes enhances the rate of their electron transfer. The active site of a type-I blue copper protein. Two 2-histidines, 1 methionine and 1 cysteine present in the coordination sphere. Example for Type-I blue copper protein are plastocyanine , azurin, and nitrite reductase, haemocyanin and tyrosinase.
The Blue Copper Proteins, a class of Type 1 copper proteins, are small proteins containing a cupredoxin fold and a single Type I copper ion coordinated by two histidine N-donors, a cysteine thiolate S-donor and a methionine thioether S-donor. [8] In the oxidized state, the Cu+2 ion will form either a trigonal bipyramidal or tetrahedral coordination. [8] The Type 1 copper proteins are identified as blue copper proteins due to the ligand to metal charge transfer an intense band at 600 nm that gives the characteristic of a deep blue colour present in the electron absorption spectrum. [9]
The protein structure of a Type 1 blue copper protein, amicyanin, is built from polypeptide folds that are commonly found in blue copper proteins β sandwich structure. [10] The structure is very similar to plastocyanin and azurin as they also identify as Type 1 copper proteins. [10] They are also similar to one another due to the geometry of the copper site of each copper protein. The protein azurin has a trigonal bipyramidal geometry with elongated axial glycine and methoinione sulfur ligands. Plastocyanins have an additional methionine sulfur ligand on the axial position. The main difference of each copper protein is that each protein has different number and species of ligand coordinated to the copper center.
The strong bond between the copper ion and the cysteine sulfur allows for the non-bonded electron on the cysteine sulfur to be present on both the low/high spin state copper ion, dx2-dy2 orbital and the p-orbital of the cysteine sulfur. [9] Most copper (II) complexes will exhibit the Jahn-Teller effect when the complex forms a tetragonal distortion of an octahedral complex geometry. [11] With blue copper proteins, a distorted tetrahedral complex will be formed due to the strong equatorial cysteine ligand and the weak axial methionine ligand. [11] The two neutral histidine ligands are positioned by the protein ligand so the geometry is distorted tetrahedral. This will cause them not to be able to coordinate perfectly as tetrahedral or a square planar.
Lowering the temperature may change the transitions. The intense absorbance at about 16000 cm−1 was characterized the absorptions feature of blue copper. There was a second lower energy feature band with moderate absorption intensity. Polarized signal-crystal absorption data on plastocyanin showed that both bands have the same polarization ratio that associated with Cu(II)-S(Cys) bond. This is explained that the normal cupric complex has high energy intense sigma and low energy weak π bonds. However, in the blue copper protein case have low energy intense sigma and high energy weak π bonds because CT intensity reflects overlap of the donor and acceptor orbitals in the CT process. This required that the 3d(x2-y2 ) orbital of the blue copper site be oriented such that its lobes bisect the Cu-S(Cys) bond giving dominant π overlap with sulfur directly. Finally, the nature of the ground state wave function of the blue copper protein is rich in electron absorption spectrum.
The cysteine sulfur copper (II) ion bonds range from 2.6 to 3.2 Å. [12] With the reduced form, CuI, protein structures are still formed with elongated bonds by 0.1 Å or less. with the oxidized and reduced protein structures, they are superimposable. With amicyanin, there is an exception due to the histidine being ligated and it is not bound to copper iodide. [12] In azurin, the Cysteine112 thiolate accepts the hydrogen bonds from the amide backbone of Asparagine47, and Phenylalanine114, and Histidine46 donates a hydrogen bond to the carbonyl backbone of Asparagine10. The Cysteine84 thiolate of plastocyanin accepts a hydrogen bond from a amide backbone, Asparagine38, and Histidine37 interacts strongly with the carbonyl backbone of Alanine33 and more weakly with the carbonyl backbone of Leucine5, Glycine34, and the amide backbone of Phenylalanine35. [12]
Cu2+ complexes often have relatively slow transfer rates. An example is the Cu2+/+ aquo complex, which is 5 x 10−7 M−1.sec−1 compared to the blue copper protein which is between 1ms and 01μs. [13] Upon electron transfer the oxidized Cu2+ state at the blue copper protein active site will be minimized because the Jahn-Teller effect is minimized. The distorted geometry prevents Jahn-Teller distortion. The orbital degeneracy is removed due to the asymmetric ligand field. [11] The asymmetric ligand field is influenced by the strong equatorial cysteine ligand and the weak axial methionine ligand. In Figure 2, an energy level diagram shows three different relevant geometries and their d-orbital splitting and the Jahn-Teller effect is shown in blue. [11] (i) shows the tetrahedral geometry energy level diagram with a that is degenerate. The tetrahedral structure can undergo Jahn-Teller distortion because of the degenerate orbitals. (ii) shows the C3v symmetric geometry energy level splitting diagram with an 2E ground state that is degenerate. The C3v geometry was formed by the elongated methionine thioether bond at the reduced site. The unpaired electrons leads to the Jahn-Teller effect. (iii) shows the ground state energy level splitting diagram of the Cs geometry with a longer thioester bond and a subsequently shorter thiolate bond. This is the proper geometry of the blue copper protein. This shows that there is no presence of the Jahn-Teller effect. The energy diagram shows that the asymmetry of the short Cu-S(Cys) bond and the highly distorted Cu-L bond angles causes the degeneracy of the orbitals to be removed and thereby removing the Jahn-Teller effect, which is due to the weak donor at an Cu-S(Met) and strong donor at Cu-S(Met). [11]
A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.
In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs, often through Lewis bases. The nature of metal–ligand bonding can range from covalent to ionic. Furthermore, the metal–ligand bond order can range from one to three. Ligands are viewed as Lewis bases, although rare cases are known to involve Lewis acidic "ligands".
Metalloprotein is a generic term for a protein that contains a metal ion cofactor. A large proportion of all proteins are part of this category. For instance, at least 1000 human proteins contain zinc-binding protein domains although there may be up to 3000 human zinc metalloproteins.
Plastocyanin is a copper-containing protein that mediates electron-transfer. It is found in a variety of plants, where it participates in photosynthesis. The protein is a prototype of the blue copper proteins, a family of intensely blue-colored metalloproteins. Specifically, it falls into the group of small type I blue copper proteins called "cupredoxins".
Valence shell electron pair repulsion (VSEPR) theory is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. It is also named the Gillespie-Nyholm theory after its two main developers, Ronald Gillespie and Ronald Nyholm.
In molecular physics, crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually d or f orbitals, due to a static electric field produced by a surrounding charge distribution. This theory has been used to describe various spectroscopies of transition metal coordination complexes, in particular optical spectra (colors). CFT successfully accounts for some magnetic properties, colors, hydration enthalpies, and spinel structures of transition metal complexes, but it does not attempt to describe bonding. CFT was developed by physicists Hans Bethe and John Hasbrouck van Vleck in the 1930s. CFT was subsequently combined with molecular orbital theory to form the more realistic and complex ligand field theory (LFT), which delivers insight into the process of chemical bonding in transition metal complexes. CFT can be complicated further by breaking assumptions made of relative metal and ligand orbital energies, requiring the use of inverted ligand field theory (ILFT) to better describe bonding.
Iron–sulfur proteins are proteins characterized by the presence of iron–sulfur clusters containing sulfide-linked di-, tri-, and tetrairon centers in variable oxidation states. Iron–sulfur clusters are found in a variety of metalloproteins, such as the ferredoxins, as well as NADH dehydrogenase, hydrogenases, coenzyme Q – cytochrome c reductase, succinate – coenzyme Q reductase and nitrogenase. Iron–sulfur clusters are best known for their role in the oxidation-reduction reactions of electron transport in mitochondria and chloroplasts. Both Complex I and Complex II of oxidative phosphorylation have multiple Fe–S clusters. They have many other functions including catalysis as illustrated by aconitase, generation of radicals as illustrated by SAM-dependent enzymes, and as sulfur donors in the biosynthesis of lipoic acid and biotin. Additionally, some Fe–S proteins regulate gene expression. Fe–S proteins are vulnerable to attack by biogenic nitric oxide, forming dinitrosyl iron complexes. In most Fe–S proteins, the terminal ligands on Fe are thiolate, but exceptions exist.
The Jahn–Teller effect is an important mechanism of spontaneous symmetry breaking in molecular and solid-state systems which has far-reaching consequences in different fields, and is responsible for a variety of phenomena in spectroscopy, stereochemistry, crystal chemistry, molecular and solid-state physics, and materials science. The effect is named for Hermann Arthur Jahn and Edward Teller, who first reported studies about it in 1937.
In chemistry, octahedral molecular geometry, also called square bipyramidal, describes the shape of compounds with six atoms or groups of atoms or ligands symmetrically arranged around a central atom, defining the vertices of an octahedron. The octahedron has eight faces, hence the prefix octa. The octahedron is one of the Platonic solids, although octahedral molecules typically have an atom in their centre and no bonds between the ligand atoms. A perfect octahedron belongs to the point group Oh. Examples of octahedral compounds are sulfur hexafluoride SF6 and molybdenum hexacarbonyl Mo(CO)6. The term "octahedral" is used somewhat loosely by chemists, focusing on the geometry of the bonds to the central atom and not considering differences among the ligands themselves. For example, [Co(NH3)6]3+, which is not octahedral in the mathematical sense due to the orientation of the N−H bonds, is referred to as octahedral.
Catechol oxidase is a copper oxidase that contains a type 3 di-copper cofactor and catalyzes the oxidation of ortho-diphenols into ortho-quinones coupled with the reduction of molecular oxygen to water. It is present in a variety of species of plants and fungi including Ipomoea batatas and Camellia sinensis. Metalloenzymes with type 3 copper centers are characterized by their ability to reversibly bind dioxygen at ambient conditions. In plants, catechol oxidase plays a key role in enzymatic browning by catalyzing the oxidation of catechol to o-quinone in the presence of oxygen, which can rapidly polymerize to form the melanin that grants damaged fruits their dark brown coloration.
Nitrite reductase refers to any of several classes of enzymes that catalyze the reduction of nitrite. There are two classes of NIR's. A multi haem enzyme reduces NO2− to a variety of products. Copper containing enzymes carry out a single electron transfer to produce nitric oxide.
Stellacyanin is a member of the blue or type I copper protein family. This family of copper proteins is generally involved in electron transfer reactions with the Cu center transitioning between the oxidized Cu(II) form and the reduced Cu(I) form. Stellacyanin is ubiquitous among vascular seed plants.
Amicyanin is a type I copper protein that plays an integral role in electron transfer. In bacteria such as Paracoccus denitrificans, amicyanin is part of a three-member redox complex, along with methylamine dehydrogenase (MADH) and cytochrome c-551i.
Dioxygenases are oxidoreductase enzymes. Aerobic life, from simple single-celled bacteria species to complex eukaryotic organisms, has evolved to depend on the oxidizing power of dioxygen in various metabolic pathways. From energetic adenosine triphosphate (ATP) generation to xenobiotic degradation, the use of dioxygen as a biological oxidant is widespread and varied in the exact mechanism of its use. Enzymes employ many different schemes to use dioxygen, and this largely depends on the substrate and reaction at hand.
Azurin is a small, periplasmic, bacterial blue copper protein found in Pseudomonas, Bordetella, or Alcaligenes bacteria. Azurin moderates single-electron transfer between enzymes associated with the cytochrome chain by undergoing oxidation-reduction between Cu(I) and Cu(II). Each monomer of an azurin tetramer has a molecular weight of approximately 14kDa, contains a single copper atom, is intensively blue, and has a fluorescence emission band centered at 308 nm.
In bioinorganic chemistry, an entatic state is "a state of an atom or group which, due to its binding in a protein, has its geometric or electronic condition adapted for function." The term was coined by Bert Vallee and R. J. P. Williams, following work on the catalytic activity of carbonic anhydrase. These states are thought to enhance the chemistry of metal ions in biological catalysis.
Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.
Transition metal thiolate complexes are metal complexes containing thiolate ligands. Thiolates are ligands that can be classified as soft Lewis bases. Therefore, thiolate ligands coordinate most strongly to metals that behave as soft Lewis acids as opposed to those that behave as hard Lewis acids. Most complexes contain other ligands in addition to thiolate, but many homoleptic complexes are known with only thiolate ligands. The amino acid cysteine has a thiol functional group, consequently many cofactors in proteins and enzymes feature cysteinate-metal cofactors.
Galactose oxidase is an enzyme that catalyzes the oxidation of D-galactose in some species of fungi.
Hexaphosphabenzene is a valence isoelectronic analogue of benzene and is expected to have a similar planar structure due to resonance stabilization and its sp2 nature. Although several other allotropes of phosphorus are stable, no evidence for the existence of P6 has been reported. Preliminary ab initio calculations on the trimerisation of P2 leading to the formation of the cyclic P6 were performed, and it was predicted that hexaphosphabenzene would decompose to free P2 with an energy barrier of 13−15.4 kcal mol−1, and would therefore not be observed in the uncomplexed state under normal experimental conditions. The presence of an added solvent, such as ethanol, might lead to the formation of intermolecular hydrogen bonds which may block the destabilizing interaction between phosphorus lone pairs and consequently stabilize P6. The moderate barrier suggests that hexaphosphabenzene could be synthesized from a [2+2+2] cycloaddition of three P2 molecules. Currently, this is a synthetic endeavour which remains to be conquered.