Nitrous-oxide reductase

Last updated
nitrous oxide reductase
Crystal Structure of Nitrous Oxide Reductase from P. Denitrificans.png
Identifiers
EC no. 1.7.2.4
CAS no. 55576-44-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a nitrous oxide reductase also known as nitrogen:acceptor oxidoreductase (N2O-forming) is an enzyme that catalyzes the final step in bacterial denitrification, the reduction of nitrous oxide to dinitrogen. [1] [2]

Contents

N2O + 2 reduced cytochome c N2 + H2O + 2 cytochrome c

It plays a critical role in preventing release of a potent greenhouse gas into the atmosphere.

Function

N2O is an inorganic metabolite of the prokaryotic cell during denitrification. Thus, denitrifiers comprise the principal group of N2O producers, with roles played also by nitrifiers, methanotrophic bacteria, and fungi. Among them, only denitrifying prokaryotes have the ability to convert N2O to N2. [3] Conversion of N2O into N2 is the last step of a complete nitrate denitrification process and is an autonomous form of respiration. N2O is generated in the denitrifying cell by the activity of respiratory NO reductase. [4] Some microbial communities only have the capability of N2O reduction to N2 and do not possess the other denitrification pathways. Such communities are known as nitrous oxide reducers. [5] Some denitrifiers do not have complete denitrification with end product N2O [6]

Structure

Nitrous-oxide reductase is a homodimer that is located in the bacterial periplasm. X-ray structures of the enzymes from Pseudomonas nautica and Paracoccus denitrificans have revealed that each subunit (MW=65 kDa) is organized into two domains. [7] One cupredoxin-like domain contains a binuclear copper protein known as CuA.

The second domain comprises a 7-bladed propeller of β-sheets that contains the catalytic site called CuZ, which is a tetranuclear copper-sulfide cluster. [8] The distance between the CuA and CuZ centers within a single subunit is greater than 30Å, a distance that precludes physiologically relevant rates of intra-subunit electron transfer. However, the two subunits are orientated "head to tail" such that the CuA center in one subunit lies only 10 Å from the CuZ center in the second ensuring that pairs of redox centers in opposite subunits form the catalytically competent unit. [9] The CuA center can undergo a one-electron redox change and hence has a function similar to that in the well-known aa3-type cytochrome c oxidases (EC 1.9.3.1) where it serves to receive an electron from soluble cytochromes c. [10]

Inhibitors

Acetylene is the most specific inhibitor of nitrous-oxide reductase. [11] Other inhibitors include azide anion, [12] thiocyanate, carbon monoxide, iodide, and cyanide. [13]

Related Research Articles

<span class="mw-page-title-main">Oxidative phosphorylation</span> Metabolic pathway

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative fermentation processes such as anaerobic glycolysis.

<span class="mw-page-title-main">Cytochrome c oxidase</span> Complex enzyme found in bacteria, archaea, and mitochondria of eukaryotes

The enzyme cytochrome c oxidase or Complex IV, is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes.

<span class="mw-page-title-main">Denitrification</span> Microbially facilitated process

Denitrification is a microbially facilitated process where nitrate (NO3) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitrification as a type of respiration that reduces oxidized forms of nitrogen in response to the oxidation of an electron donor such as organic matter. The preferred nitrogen electron acceptors in order of most to least thermodynamically favorable include nitrate (NO3), nitrite (NO2), nitric oxide (NO), nitrous oxide (N2O) finally resulting in the production of dinitrogen (N2) completing the nitrogen cycle. Denitrifying microbes require a very low oxygen concentration of less than 10%, as well as organic C for energy. Since denitrification can remove NO3, reducing its leaching to groundwater, it can be strategically used to treat sewage or animal residues of high nitrogen content. Denitrification can leak N2O, which is an ozone-depleting substance and a greenhouse gas that can have a considerable influence on global warming.

<span class="mw-page-title-main">Nitrogenase</span> Class of enzymes

Nitrogenases are enzymes (EC 1.18.6.1EC 1.19.6.1) that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only family of enzymes known to catalyze this reaction, which is a step in the process of nitrogen fixation. Nitrogen fixation is required for all forms of life, with nitrogen being essential for the biosynthesis of molecules (nucleotides, amino acids) that create plants, animals and other organisms. They are encoded by the Nif genes or homologs. They are related to protochlorophyllide reductase.

<span class="mw-page-title-main">Rieske protein</span> Protein family with an iron–sulfur center transferring electrons

Rieske proteins are iron–sulfur protein (ISP) components of cytochrome bc1 complexes and cytochrome b6f complexes and are responsible for electron transfer in some biological systems. John S. Rieske and co-workers first discovered the protein and in 1964 isolated an acetylated form of the bovine mitochondrial protein. In 1979 Trumpower's lab isolated the "oxidation factor" from bovine mitochondria and showed it was a reconstitutively-active form of the Rieske iron-sulfur protein
It is a unique [2Fe-2S] cluster in that one of the two Fe atoms is coordinated by two histidine residues rather than two cysteine residues. They have since been found in plants, animals, and bacteria with widely ranging electron reduction potentials from -150 to +400 mV.

Denitrifying bacteria are a diverse group of bacteria that encompass many different phyla. This group of bacteria, together with denitrifying fungi and archaea, is capable of performing denitrification as part of the nitrogen cycle. Denitrification is performed by a variety of denitrifying bacteria that are widely distributed in soils and sediments and that use oxidized nitrogen compounds in absence of oxygen as a terminal electron acceptor. They metabolise nitrogenous compounds using various enzymes, turning nitrogen oxides back to nitrogen gas or nitrous oxide.

Any enzyme system that includes cytochrome P450 protein or domain can be called a P450-containing system.

Nitrite reductase refers to any of several classes of enzymes that catalyze the reduction of nitrite. There are two classes of NIR's. A multi haem enzyme reduces NO2 to a variety of products. Copper containing enzymes carry out a single electron transfer to produce nitric oxide.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

Paracoccus denitrificans, is a coccoid bacterium known for its nitrate reducing properties, its ability to replicate under conditions of hypergravity and for being a relative of the eukaryotic mitochondrion.

Amine Dehydrogenase, also known as methylamine dehydrogenase (MADH), is a tryptophan tryptophylquinone-dependent (TTQ-dependent) enzyme that catalyzes the oxidative deamination of a primary amine to an aldehyde and ammonia. The reaction occurs as follows:

Nitric oxide reductase, an enzyme, catalyzes the reduction of nitric oxide (NO) to nitrous oxide (N2O). The enzyme participates in nitrogen metabolism and in the microbial defense against nitric oxide toxicity. The catalyzed reaction may be dependent on different participating small molecules: Cytochrome c (EC: 1.7.2.5, Nitric oxide reductase (cytochrome c)), NADPH (EC:1.7.1.14), or Menaquinone (EC:1.7.5.2).

<span class="mw-page-title-main">Cytochrome c nitrite reductase</span> Class of enzymes

Cytochrome c nitrite reductase (ccNiR) is a bacterial enzyme that catalyzes the six electron reduction of nitrite to ammonia; an important step in the biological nitrogen cycle. The enzyme catalyses the second step in the two step conversion of nitrate to ammonia, which allows certain bacteria to use nitrite as a terminal electron acceptor, rather than oxygen, during anaerobic conditions. During this process, ccNiR draws electrons from the quinol pool, which are ultimately provided by a dehydrogenase such as formate dehydrogenase or hydrogenase. These dehydrogenases are responsible for generating a proton motive force.

<span class="mw-page-title-main">Nitrite reductase (NO-forming)</span> Class of enzymes

In enzymology, a nitrite reductase (NO-forming) (EC 1.7.2.1) is an enzyme that catalyzes the chemical reaction

Aerobic denitrification or co-respiration the simultaneous use of both oxygen (O2) and nitrate (NO3) as oxidizing agents, performed by various genera of microorganisms. This process differs from anaerobic denitrification not only in its insensitivity to the presence of oxygen, but also in that it has a higher potential to create the harmful byproduct nitrous oxide.

Nitric oxide reductase (NAD(P), nitrous oxide-forming) (EC 1.7.1.14, fungal nitric oxide reductase, cytochrome P450nor, NOR (ambiguous)) is an enzyme with systematic name nitrous oxide:NAD(P) oxidoreductase. This enzyme catalyses the following chemical reaction

Nitric oxide reductase (cytochrome c) (EC 1.7.2.5) is an enzyme with systematic name nitrous oxide:ferricytochrome-c oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Cytochrome d</span>

Cytochrome d, previously known as cytochrome a2, is a name for all cytochromes that contain heme D as a cofactor. Two unrelated classes of cytochrome d are known: Cytochrome bd, an enzyme that generates a charge across the membrane so that protons will move, and cytochrome cd1, a nitrite reductase.

<span class="mw-page-title-main">Cattle urine patches</span> Grass damage by cattle urine

Urine patches in cattle pastures generate large concentrations of the greenhouse gas nitrous oxide through nitrification and denitrification processes in urine-contaminated soils. Over the past few decades, the cattle population has increased more rapidly than the human population. Between the years 2000 and 2050, the cattle population is expected to increase from 1.5 billion to 2.6 billion. When large populations of cattle are packed into pastures, excessive amounts of urine soak into soils. This increases the rate at which nitrification and denitrification occur and produce nitrous oxide. Currently, nitrous oxide is one of the single most important ozone-depleting emissions and is expected to remain the largest throughout the 21st century.

Dissimilatory nitrate reduction to ammonium (DNRA), also known as nitrate/nitrite ammonification, is the result of anaerobic respiration by chemoorganoheterotrophic microbes using nitrate (NO3) as an electron acceptor for respiration. In anaerobic conditions microbes which undertake DNRA oxidise organic matter and use nitrate (rather than oxygen) as an electron acceptor, reducing it to nitrite, then ammonium (NO3→NO2→NH4+).

References

  1. Schneider, Lisa K.; Wüst, Anja; Pomowski, Anja; Zhang, Lin; Einsle, Oliver (2014). "Chapter 8. No Laughing Matter: The Unmaking of the Greenhouse Gas Dinitrogen Monoxide by Nitrous Oxide Reductase". In Peter M.H. Kroneck and Martha E. Sosa Torres (ed.). The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. Vol. 14. Springer. pp. 177–210. doi:10.1007/978-94-017-9269-1_8. PMID   25416395.
  2. Berks BC, Ferguson SJ, Moir JW, Richardson DJ (December 1995). "Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions". Biochim. Biophys. Acta. 1232 (3): 97–173. doi: 10.1016/0005-2728(95)00092-5 . PMID   8534676.
  3. Bothe H (2006). Biology of the Nitrogen Cycle. Elsevier Science. ISBN   978-0-444-52857-5.
  4. Zumft WG (January 2005). "Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type". J. Inorg. Biochem. 99 (1): 194–215. doi:10.1016/j.jinorgbio.2004.09.024. PMID   15598502.
  5. Domeignoz-Horta, Luiz A.; Spor, Aymé; Bru, David; Breuil, Marie-Christine; Bizouard, Florian; Léonard, Joël; Philippot, Laurent (2015-09-24). "The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system". Frontiers in Microbiology. 6: 971. doi: 10.3389/fmicb.2015.00971 . ISSN   1664-302X. PMC   4585238 . PMID   26441904.
  6. Easton, Zachary M. (27 March 2013). "Denitrification Management". hdl:10919/48086.
  7. Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K, Djinovic-Carugo K (January 2003). "Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution". Biochem. J. 369 (Pt 1): 77–88. doi:10.1042/BJ20020782. PMC   1223067 . PMID   12356332.
  8. Pomowski, A., Zumft, W. G., Kroneck, P. M. H., Einsle, O., "N2O binding at a [lsqb]4Cu:2S copper-sulphur cluster in nitrous oxide reductase", Nature 2011, 477, 234. doi : 10.1038/nature10332
  9. Rasmussen T, Brittain T, Berks BC, Watmough NJ, Thomson AJ (November 2005). "Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus" (PDF). Dalton Trans (21): 3501–6. doi:10.1039/b501846c. PMID   16234931.
  10. Hill BC (April 1993). "The sequence of electron carriers in the reaction of cytochrome c oxidase with oxygen". J. Bioenerg. Biomembr. 25 (2): 115–20. doi:10.1007/bf00762853. PMID   8389744. S2CID   45975377.
  11. Balderston WL, Sherr B, Payne WJ (April 1976). "Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus". Appl. Environ. Microbiol. 31 (4): 504–8. Bibcode:1976ApEnM..31..504B. doi:10.1128/AEM.31.4.504-508.1976. PMC   169812 . PMID   1267447.
  12. Matsubara, T; Mori T (Dec 1968). "Studies on denitrification. IX. Nitrous oxide, its production and reduction to nitrogen". J Biochem. 64 (6): 863–71. doi:10.1093/oxfordjournals.jbchem.a128968. PMID   5718551.
  13. Kristjansson JK, Hollocher TC (January 1980). "First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization". J. Biol. Chem. 255 (2): 704–7. doi: 10.1016/S0021-9258(19)86236-1 . PMID   7356639.