D-amino acid dehydrogenase

Last updated

D-amino-acid dehydrogenase (EC 1.4.99.1) is a bacterial enzyme that catalyses the oxidation of D-amino acids into their corresponding oxoacids. It contains both flavin and nonheme iron as cofactors. [1] The enzyme has a very broad specificity and can act on most D-amino acids. [2]

Contents

D-amino acid + H2O + acceptor <=> a 2-oxo acid + NH3 + reduced acceptor

This reaction is distinct from the oxidation reaction catalysed by D-amino acid oxidase that uses oxygen as a second substrate, as the dehydrogenase can use many different compounds as electron acceptors, with the physiological substrate being coenzyme Q. [1] [3]

D-amino acid dehydrogenase is an enzyme that catalyzes NADPH from NADP+ and D- glucose to produce D- amino acids and glucose dehydrogenase. Some but not limited to these amino acids are D-leucine, D-isoleucine, and D-Valine, which are essential amino acids that humans cannot synthesize due to the fact that they are not included in their diet. Moreover, D- amino acids catalyzes the formation of 2-oxo acids to produce D- amino acids in the presence of DCIP which is an electron acceptor. [4] D-amino acids are used as components of pharmaceutical products, such as antibiotics, anticoagulants, and pesticides, because they have been shown to be not only more potent than their L enantiomers, but also more resistant to enzyme degradation. [5] D-amino acid dehydrogenase enzymes have been synthesized via mutagenesis with an ability to produce straight, branched, cyclic aliphatic and aromatic D-amino acids. [5] Solubilized D-amino acid dehydrogenase tends to increase its affinity for D-alanine, D-asparagine, and D--amino-n-butyrate. [6]

In E. coli K12 D-amino acid dehydrogenase is most active with D-alanine as its substrate, as this amino acid is the sole source of carbon, nitrogen, and energy. The enzyme works optimally at pH 8.9 and has a Michaelis constant for D-alanine equal to 30 mM. [7] DAD discovered in gram-negative E. coli B membrane can convert L-amino acids into D-amino acids as well. [8]

Additionally, D- amino acid dehydrogenase is used in Dye-Linked dehydrogenase (Dye-DHs) which uses artificial dyes such as 2,6-Dichloroindophenol (DCIP) as their electron acceptor rather than using their natural electron acceptors. This can accelerate the reaction between the enzyme and the substrate when the electrons are being transferred. [9]

Use in synthesis reactions

D-Amino Acid Dehydrogenase has shown itself to be effective in the synthesis of branched-chain amino acids such as D-Leucine, D-Isoleucine, and D-Valine. In the given study, researchers were successfully able to use D-amino acid dehydrogenase to create high amounts of these products from the starting material of 2-oxo acids, in the presence of ammonia. The conditions for this were variable, though the best results appeared at around 65 °C.

Amino Acids obtained through these reactions resulted in a high enantioselectivity of >99% and high yields of >99%.

Given the nature of this enzyme, it may be possible to use it in order to create non-branched D-amino acids as well as modified D-amino acids. [10]

Obtaining D-Amino Acid Dehydrogenase

In one study, in order to test the viability of using D-amino dehydrogenase in synthesis reactions, researchers used mutant bacteria to obtain and create different strains of the enzyme. These researchers found that it only required five mutations in order to modify the selective D-Amino Dehydrogenase into working with other D-amino acids. They also found that it retained its highly selective nature, capable of receiving mostly D-enantiomers after mutation, with yields in excess of 95%. [5]

A heat-stable variant of D-amino acid dehydrogenase was found in the bacterium Rhodothermus marinus JCM9785. This variant is involved in the catabolism of trans-4-hydroxy-L-proline. [11]

From the given studies, in order to obtain D-amino acid dehydrogenase one must first introduce and express it within a given bacterial species, some of which have been previously referenced. It must then be purified under favorable conditions. These are based upon the particular species of D-amino acid dehydrogenase used in a given research experiment. Under incorrect conditions, the protein may denature. For example, it was found that specifically D-alanine dehydrogenases from E. coli and P. aeruginosa would lose most of their activity when subjected to conditions of 37 - 42 °C. After this, it is possible to separate and purify through existing methods. [12]

Artificial D-Amino Acid Dehydrogenase

Due to the drawbacks of current methods, researchers have begun work on creating an artificial enzyme capable of producing the same D-amino acids as enzymes from naturally occurring sources. By adding five amino acids to a given sample isolated from U. thermosphaericus, they succeeded. By modifying the amino acid sequence, researchers were able to change the specificity of the molecule towards certain reactants and products, showing that it may be possible to use artificial D-amino acid dehydrogenase to screen for certain D-amino acid products. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Oxidative phosphorylation</span> Metabolic pathway

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative fermentation processes such as anaerobic glycolysis.

Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like peptidoglycan layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

<span class="mw-page-title-main">Pyrroloquinoline quinone</span> Chemical compound

Pyrroloquinoline quinone (PQQ), also called methoxatin, is a redox cofactor and antioxidant.

<span class="mw-page-title-main">Pyridoxal phosphate</span> Active form of vitamin B6

Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P), the active form of vitamin B6, is a coenzyme in a variety of enzymatic reactions. The International Union of Biochemistry and Molecular Biology has catalogued more than 140 PLP-dependent activities, corresponding to ~4% of all classified activities. The versatility of PLP arises from its ability to covalently bind the substrate, and then to act as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Mitochondrial matrix</span> Space within the inner membrane of the mitochondrion

In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids.

<span class="mw-page-title-main">Homoserine</span> Chemical compound

Homoserine (also called isothreonine) is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CH2OH. L-Homoserine is not one of the common amino acids encoded by DNA. It differs from the proteinogenic amino acid serine by insertion of an additional -CH2- unit into the backbone. Homoserine, or its lactone form, is the product of a cyanogen bromide cleavage of a peptide by degradation of methionine.

<span class="mw-page-title-main">Cyanophycin</span>

Cyanophycin, also known as CGP or multi-L-arginyl-poly, is a non-protein, non-ribosomally produced amino acid polymer composed of an aspartic acid backbone and arginine side groups.

<span class="mw-page-title-main">Mixed acid fermentation</span> Biochemical conversion of six-carbon sugars into acids in bacteria

In biochemistry, mixed acid fermentation is the metabolic process by which a six-carbon sugar is converted into a complex and variable mixture of acids. It is an anaerobic (non-oxygen-requiring) fermentation reaction that is common in bacteria. It is characteristic for members of the Enterobacteriaceae, a large family of Gram-negative bacteria that includes E. coli.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Thermolysin</span>

Thermolysin is a thermostable neutral metalloproteinase enzyme produced by the Gram-positive bacteria Bacillus thermoproteolyticus. It requires one zinc ion for enzyme activity and four calcium ions for structural stability. Thermolysin specifically catalyzes the hydrolysis of peptide bonds containing hydrophobic amino acids. However thermolysin is also widely used for peptide bond formation through the reverse reaction of hydrolysis. Thermolysin is the most stable member of a family of metalloproteinases produced by various Bacillus species. These enzymes are also termed 'neutral' proteinases or thermolysin -like proteinases (TLPs).

In enzymology, a taurine dioxygenase (EC 1.14.11.17) is an enzyme that catalyzes the chemical reaction.

<span class="mw-page-title-main">Isocitrate lyase</span>

Isocitrate lyase, or ICL, is an enzyme in the glyoxylate cycle that catalyzes the cleavage of isocitrate to succinate and glyoxylate. Together with malate synthase, it bypasses the two decarboxylation steps of the tricarboxylic acid cycle and is used by bacteria, fungi, and plants.

The enzyme methylglyoxal synthase catalyzes the chemical reaction

The Arc system is a two-component system found in some bacteria that regulates gene expression in faculatative anaerobes such as Escheria coli. Two-component system means that it has a sensor molecule and a response regulator. Arc is an abbreviation for Anoxic Redox Control system. Arc systems are instrumental in maintaining energy metabolism during transcription of bacteria. The ArcA response regulator looks at growth conditions and expresses genes to best suit the bacteria. The Arc B sensor kinase, which is a tripartite protein, is membrane bound and can autophosphorylate.

Acrylyl-CoA reductase (NADH) (EC 1.3.1.95) is an enzyme with systematic name propanoyl-CoA:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Fumarate reductase (quinol)</span>

Fumarate reductase (quinol) (EC 1.3.5.4, QFR,FRD, menaquinol-fumarate oxidoreductase, quinol:fumarate reductase) is an enzyme with systematic name succinate:quinone oxidoreductase. This enzyme catalyzes the following chemical reaction:

D-amino acid dehydrogenase (quinone) (EC 1.4.5.1, DadA) is an enzyme with systematic name D-amino acid:quinone oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction

D-proline dehydrogenase is an enzyme with systematic name D-proline:acceptor oxidoreductase. This enzyme catalyses the following chemical reaction

Thermococcus profundus is a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. It is coccoid-shaped with 1–2 μm in diameter, designated as strain DT5432.

References

  1. 1 2 Olsiewski PJ, Kaczorowski GJ, Walsh C (25 May 1980). "Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B". J. Biol. Chem. 255 (10): 4487–94. doi: 10.1016/S0021-9258(19)85517-5 . PMID   6102989.
  2. Tsukada K (10 October 1966). "D-amino acid dehydrogenases of Pseudomonas fluorescens". J. Biol. Chem. 241 (19): 4522–8. doi: 10.1016/S0021-9258(18)99750-4 . hdl: 2433/211070 . PMID   5925166.
  3. Jones H, Venables WA (1983). "Effects of solubilisation on some properties of the membrane-bound respiratory enzyme D-amino acid dehydrogenase of Escherichia coli". FEBS Letters. 151 (2): 189–92. doi: 10.1016/0014-5793(83)80066-0 . PMID   6131836. S2CID   26120769.
  4. Akita, Hironaga; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa (1 February 2014). "Efficient synthesis of d-branched-chain amino acids and their labeled compounds with stable isotopes using d-amino acid dehydrogenase". Applied Microbiology and Biotechnology. 98 (3): 1135–1143. doi:10.1007/s00253-013-4902-1. ISSN   1432-0614. PMID   23661083. S2CID   2640504.
  5. 1 2 3 Vedha-Peters, Kavitha; Gunawardana, Manjula; Rozzell, J. David; Novick, Scott J. (August 2006). "Creation of a Broad-Range and Highly Stereoselectived-Amino Acid Dehydrogenase for the One-Step Synthesis ofd-Amino Acids". Journal of the American Chemical Society. 128 (33): 10923–10929. doi:10.1021/ja0603960. ISSN   0002-7863. PMC   2533268 . PMID   16910688.
  6. Jones, H (January 1983). "Effects of solubilisation on some properties of the membranebound respiratory enzyme D-amino acid Escherichia coli". FEBS Letters. 151 (2): 189–192. doi: 10.1016/0014-5793(83)80066-0 . PMID   6131836. S2CID   26120769.
  7. Franklin, F.C.H. (10 January 1976). "Biochemical, genetic, and regulatory studies of alanine catabolism in Escherichia coli K12". Molecular and General Genetics. 149 (2): 229–237. doi:10.1007/BF00332894. PMID   13292. S2CID   22823588.
  8. Xu, Jinjin; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie (4 July 2017). "Expression, purification, and characterization of a membrane bound d-amino acid dehydrogenase from Proteus mirabilis JN458". Biotechnology Letters. 39 (10): 1559–1566. doi:10.1007/s10529-017-2388-0. ISSN   0141-5492. PMID   28676939. S2CID   11335026.
  9. Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-ichiro; Ohshima, Toshihisa (1 November 2015). "Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology". Applied Microbiology and Biotechnology. 99 (22): 9337–9347. doi:10.1007/s00253-015-6944-z. ISSN   1432-0614. PMID   26362681. S2CID   12495865.
  10. Akita, Hironaga; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa (2013-05-10). "Efficient synthesis of d-branched-chain amino acids and their labeled compounds with stable isotopes using d-amino acid dehydrogenase". Applied Microbiology and Biotechnology. 98 (3): 1135–1143. doi:10.1007/s00253-013-4902-1. ISSN   0175-7598. PMID   23661083. S2CID   2640504.
  11. Satomura, Takenori; Ishikura, Masaru; Koyanagi, Takashi; Sakuraba, Haruhiko; Ohshima, Toshihisa; Suye, Shin-ichiro (2014-12-05). "Dye-linked d-amino acid dehydrogenase from the thermophilic bacterium Rhodothermus marinus JCM9785: characteristics and role in trans-4-hydroxy-l-proline catabolism". Applied Microbiology and Biotechnology. 99 (10): 4265–4275. doi:10.1007/s00253-014-6263-9. ISSN   0175-7598. PMID   25472442. S2CID   11805375.
  12. Xu, Jinjin; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie (2017-07-04). "Expression, purification, and characterization of a membrane-bound d-amino acid dehydrogenase from Proteus mirabilis JN458". Biotechnology Letters. 39 (10): 1559–1566. doi:10.1007/s10529-017-2388-0. ISSN   0141-5492. PMID   28676939. S2CID   11335026.
  13. Akita, Hironaga; Hayashi, Junji; Sakuraba, Haruhiko; Ohshima, Toshihisa (2018-08-03). "Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application". Frontiers in Microbiology. 9: 1760. doi: 10.3389/fmicb.2018.01760 . ISSN   1664-302X. PMC   6085447 . PMID   30123202.