Pentose phosphate pathway

Last updated

The pentose phosphate pathway Pentose Phosphate Pathway.png
The pentose phosphate pathway

The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt or HMP shunt) is a metabolic pathway parallel to glycolysis. [1] It generates NADPH and pentoses (five-carbon sugars) as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides. [1] While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes). The reactions of the pathway were elucidated in the early 1950s by Bernard Horecker and co-workers. [2] [3]

Contents

There are two distinct phases in the pathway. The first is the oxidative phase, in which NADPH is generated, and the second is the non-oxidative synthesis of five-carbon sugars. For most organisms, the pentose phosphate pathway takes place in the cytosol; in plants, most steps take place in plastids. [4]

Like glycolysis, the pentose phosphate pathway appears to have a very ancient evolutionary origin. The reactions of this pathway are mostly enzyme catalyzed in modern cells, however, they also occur non-enzymatically under conditions that replicate those of the Archean ocean, and are catalyzed by metal ions, particularly ferrous ions (Fe(II)). [5] This suggests that the origins of the pathway could date back to the prebiotic world.

Outcome

The primary results of the pathway are:

Aromatic amino acids, in turn, are precursors for many biosynthetic pathways, including the lignin in wood.[ citation needed ]

Dietary pentose sugars derived from the digestion of nucleic acids may be metabolized through the pentose phosphate pathway, and the carbon skeletons of dietary carbohydrates may be converted into glycolytic/gluconeogenic intermediates.

In mammals, the PPP occurs exclusively in the cytoplasm. In humans, it is found to be most active in the liver, mammary glands, and adrenal cortex.[ citation needed ] The PPP is one of the three main ways the body creates molecules with reducing power, accounting for approximately 60% of NADPH production in humans.[ citation needed ]

One of the uses of NADPH in the cell is to prevent oxidative stress. It reduces glutathione via glutathione reductase, which converts reactive H2O2 into H2O by glutathione peroxidase. If absent, the H2O2 would be converted to hydroxyl free radicals by Fenton chemistry, which can attack the cell. Erythrocytes, for example, generate a large amount of NADPH through the pentose phosphate pathway to use in the reduction of glutathione.

Hydrogen peroxide is also generated for phagocytes in a process often referred to as a respiratory burst. [6]

Phases

Oxidative phase

In this phase, two molecules of NADP + are reduced to NADPH, utilizing the energy from the conversion of glucose-6-phosphate into ribulose 5-phosphate.

Oxidative phase of pentose phosphate pathway.
Glucose-6-phosphate (1), 6-phosphoglucono-d-lactone (2), 6-phosphogluconate (3), ribulose 5-phosphate (4) Ox Pentose phosphate pathway.svg
Oxidative phase of pentose phosphate pathway.
Glucose-6-phosphate (1), 6-phosphoglucono-δ-lactone (2), 6-phosphogluconate (3), ribulose 5-phosphate (4)

The entire set of reactions can be summarized as follows:

ReactantsProductsEnzymeDescription
Glucose 6-phosphate + NADP+6-phosphoglucono-δ-lactone + NADPH glucose 6-phosphate dehydrogenase Dehydrogenation. The hydroxyl on carbon 1 of glucose 6-phosphate turns into a carbonyl, generating a lactone, and, in the process, NADPH is generated.
6-phosphoglucono-δ-lactone + H2O6-phosphogluconate + H+ 6-phosphogluconolactonase Hydrolysis
6-phosphogluconate + NADP+ribulose 5-phosphate + NADPH + CO2 6-phosphogluconate dehydrogenase Oxidative decarboxylation. NADP+ is the electron acceptor, generating another molecule of NADPH, a CO2, and ribulose 5-phosphate.

The overall reaction for this process is:

Glucose 6-phosphate + 2 NADP+ + H2O → ribulose 5-phosphate + 2 NADPH + 2 H+ + CO2

Non-oxidative phase

The pentose phosphate pathway's nonoxidative phase Nichtox Pentosephosphatweg.png
The pentose phosphate pathway's nonoxidative phase
ReactantsProductsEnzymes
ribulose 5-phosphate ribose 5-phosphate ribose-5-phosphate isomerase
ribulose 5-phosphate xylulose 5-phosphate ribulose 5-phosphate 3-epimerase
xylulose 5-phosphate + ribose 5-phosphate glyceraldehyde 3-phosphate + sedoheptulose 7-phosphate transketolase
sedoheptulose 7-phosphate + glyceraldehyde 3-phosphate erythrose 4-phosphate + fructose 6-phosphate transaldolase
xylulose 5-phosphate + erythrose 4-phosphate glyceraldehyde 3-phosphate + fructose 6-phosphate transketolase

Net reaction: 3 ribulose-5-phosphate → 1 ribose-5-phosphate + 2 xylulose-5-phosphate → 2 fructose-6-phosphate + glyceraldehyde-3-phosphate

Regulation

Glucose-6-phosphate dehydrogenase is the rate-controlling enzyme of this pathway[ citation needed ]. It is allosterically stimulated by NADP+ and strongly inhibited by NADPH. [7] The ratio of NADPH:NADP+ is the primary mode of regulation for the enzyme and is normally about 100:1 in liver cytosol[ citation needed ]. This makes the cytosol a highly-reducing environment. An NADPH-utilizing pathway forms NADP+, which stimulates Glucose-6-phosphate dehydrogenase to produce more NADPH. This step is also inhibited by acetyl CoA.[ citation needed ]

G6PD activity is also post-translationally regulated by cytoplasmic deacetylase SIRT2. SIRT2-mediated deacetylation and activation of G6PD stimulates oxidative branch of PPP to supply cytosolic NADPH to counteract oxidative damage or support de novo lipogenesis. [8] [9]

Erythrocytes

Several deficiencies in the level of activity (not function) of glucose-6-phosphate dehydrogenase have been observed to be associated with resistance to the malarial parasite Plasmodium falciparum among individuals of Mediterranean and African descent. The basis for this resistance may be a weakening of the red cell membrane (the erythrocyte is the host cell for the parasite) such that it cannot sustain the parasitic life cycle long enough for productive growth. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

<span class="mw-page-title-main">Glucose-6-phosphate dehydrogenase deficiency</span> Medical condition

Glucose-6-phosphate dehydrogenase deficiency (G6PDD), also known as favism, is the most common enzyme deficiency anemia worldwide. It is an inborn error of metabolism that predisposes to red blood cell breakdown. Most of the time, those who are affected have no symptoms. Following a specific trigger, symptoms such as yellowish skin, dark urine, shortness of breath, and feeling tired may develop. Complications can include anemia and newborn jaundice. Some people never have symptoms.

The term amphibolism is used to describe a biochemical pathway that involves both catabolism and anabolism. Catabolism is a degradative phase of metabolism in which large molecules are converted into smaller and simpler molecules, which involves two types of reactions. First, hydrolysis reactions, in which catabolism is the breaking apart of molecules into smaller molecules to release energy. Examples of catabolic reactions are digestion and cellular respiration, where sugars and fats are broken down for energy. Breaking down a protein into amino acids, or a triglyceride into fatty acids, or a disaccharide into monosaccharides are all hydrolysis or catabolic reactions. Second, oxidation reactions involve the removal of hydrogens and electrons from an organic molecule. Anabolism is the biosynthesis phase of metabolism in which smaller simple precursors are converted to large and complex molecules of the cell. Anabolism has two classes of reactions. The first are dehydration synthesis reactions; these involve the joining of smaller molecules together to form larger, more complex molecules. These include the formation of carbohydrates, proteins, lipids and nucleic acids. The second are reduction reactions, in which hydrogens and electrons are added to a molecule. Whenever that is done, molecules gain energy.

<span class="mw-page-title-main">Glucose 6-phosphate</span> Chemical compound

Glucose 6-phosphate is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.

In organic chemistry, a tetrose is a monosaccharide with 4 carbon atoms. They have either an aldehyde functional group in position 1 (aldotetroses) or a ketone group in position 2 (ketotetroses).

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide phosphate</span> Chemical compound

Nicotinamide adenine dinucleotide phosphate, abbreviated NADP or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form, whereas NADP+ is the oxidized form. NADP+ is used by all forms of cellular life. NADP+ is essential for life because it is needed for cellular respiration.

<span class="mw-page-title-main">Glucose-6-phosphate dehydrogenase</span> Enzyme involved in the production of energy by cells

Glucose-6-phosphate dehydrogenase (G6PD or G6PDH) (EC 1.1.1.49) is a cytosolic enzyme that catalyzes the chemical reaction

The polyol pathway is a two-step process that converts glucose to fructose. In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway.

<span class="mw-page-title-main">Tumor metabolome</span>

The study of the tumor metabolism, also known as tumor metabolome describes the different characteristic metabolic changes in tumor cells. The characteristic attributes of the tumor metabolome are high glycolytic enzyme activities, the expression of the pyruvate kinase isoenzyme type M2, increased channeling of glucose carbons into synthetic processes, such as nucleic acid, amino acid and phospholipid synthesis, a high rate of pyrimidine and purine de novo synthesis, a low ratio of Adenosine triphosphate and Guanosine triphosphate to Cytidine triphosphate and Uridine triphosphate, low Adenosine monophosphate levels, high glutaminolytic capacities, release of immunosuppressive substances and dependency on methionine.

<span class="mw-page-title-main">Sugar phosphates</span>

Sugar phosphates are often used in biological systems to store or transfer energy. They also form the backbone for DNA and RNA. Sugar phosphate backbone geometry is altered in the vicinity of the modified nucleotides.

<span class="mw-page-title-main">Aldose reductase</span> Enzyme

In enzymology, aldose reductase is an enzyme in humans encoded by the gene AKR1B1. It is an cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides, and primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.

<span class="mw-page-title-main">6-Phosphogluconate dehydrogenase</span> Class of enzymes

6-Phosphogluconate dehydrogenase (6PGD) is an enzyme in the pentose phosphate pathway. It forms ribulose 5-phosphate from 6-phosphogluconate:

<span class="mw-page-title-main">Ribose 5-phosphate</span> Chemical compound

Ribose 5-phosphate (R5P) is both a product and an intermediate of the pentose phosphate pathway. The last step of the oxidative reactions in the pentose phosphate pathway is the production of ribulose 5-phosphate. Depending on the body's state, ribulose 5-phosphate can reversibly isomerize to ribose 5-phosphate. Ribulose 5-phosphate can alternatively undergo a series of isomerizations as well as transaldolations and transketolations that result in the production of other pentose phosphates as well as fructose 6-phosphate and glyceraldehyde 3-phosphate.

<span class="mw-page-title-main">6-phosphogluconolactonase</span> Cytosolic enzyme

6-Phosphogluconolactonase (EC 3.1.1.31, 6PGL, PGLS, systematic name 6-phospho-D-glucono-1,5-lactone lactonohydrolase) is a cytosolic enzyme found in all organisms that catalyzes the hydrolysis of 6-phosphogluconolactone to 6-phosphogluconic acid in the oxidative phase of the pentose phosphate pathway:

<span class="mw-page-title-main">Phosphogluconate dehydrogenase (decarboxylating)</span>

In enzymology, a phosphogluconate dehydrogenase (decarboxylating) (EC 1.1.1.44) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribose-5-phosphate isomerase</span>

Ribose-5-phosphate isomerase (Rpi) encoded by the RPIA gene is an enzyme that catalyzes the conversion between ribose-5-phosphate (R5P) and ribulose-5-phosphate (Ru5P). It is a member of a larger class of isomerases which catalyze the interconversion of chemical isomers. It plays a vital role in biochemical metabolism in both the pentose phosphate pathway and the Calvin cycle. The systematic name of this enzyme class is D-ribose-5-phosphate aldose-ketose-isomerase.

<span class="mw-page-title-main">Inborn errors of carbohydrate metabolism</span> Medical condition

Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.

<span class="mw-page-title-main">6-phosphogluconate dehydrogenase deficiency</span> Medical condition

6-Phosphogluconate dehydrogenase deficiency, or partial deficiency, is an autosomal hereditary disease characterized by abnormally low levels of 6-phosphogluconate dehydrogenase (6PGD), a metabolic enzyme involved in the Pentose phosphate pathway. It is very important in the metabolism of red blood cells (erythrocytes). 6PDG deficiency affects less than 1% of the population, and studies suggest that there may be race variant involved in many of the reported cases. Although it is similar, 6PDG deficiency is not linked to glucose-6-phosphate dehydrogenase (G6PD) deficiency, as they are located on different chromosomes. However, a few people have had both of these metabolic diseases.

Divicine (2,6-diamino-4,5-dihydroxypyrimidine) is an oxidant and a base with alkaloidal properties found in fava beans and Lathyrus sativus. It is an aglycone of vicine. A common derivative is the diacetate form (2,6-diamino-1,6-dihydro-4,5-pyrimidinedione).

Pseudohypoxia refers to a condition that mimics hypoxia, by having sufficient oxygen yet impaired mitochondrial respiration due to a deficiency of necessary co-enzymes, such as NAD+ and TPP. The increased cytosolic ratio of free NADH/NAD+ in cells (more NADH than NAD+) can be caused by diabetic hyperglycemia and by excessive alcohol consumption. Low levels of TPP results from thiamine deficiency.

References

  1. 1 2 Alfarouk KO, Ahmed SB, Elliott RL, et al. (2020). "The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH". Metabolites. 10: 285. doi: 10.3390/metabo10070285 . PMC   7407102 . PMID   32664469.
  2. Horecker BL, Smyrniotis PZ, Seegmiller JE (1951). "The enzymatic conversion of 6-phosphogluconate to ribulose-5-phosphate and ribose-5-phosphate". J. Biol. Chem. 193 (1): 383–396. doi: 10.1016/S0021-9258(19)52464-4 . PMID   14907726.
  3. Horecker BL (2002). "The pentose phosphate pathway". J. Biol. Chem. 277 (50): 47965–47971. doi: 10.1074/jbc.X200007200 . PMID   12403765.
  4. Kruger NJ, von Schaewen A (June 2003). "The oxidative pentose phosphate pathway: structure and organisation". Current Opinion in Plant Biology. 6 (3): 236–246. Bibcode:2003COPB....6..236K. doi:10.1016/S1369-5266(03)00039-6. PMID   12753973.
  5. Keller MA, Turchyn AV, Ralser M (25 April 2014). "Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean". Molecular Systems Biology. 10 (4): 725. doi:10.1002/msb.20145228. PMC   4023395 . PMID   24771084.
  6. Immunology at MCG 1/cytotox
  7. Voet Donald, Voet Judith G (2011). Biochemistry (4th ed.). John Wiley & Sons. p. 894. ISBN   978-0-470-57095-1.
  8. Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D (June 2014). "Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress". EMBO Journal. 33 (12): 1304–20. doi:10.1002/embj.201387224. PMC   4194121 . PMID   24769394.
  9. Xu SN, Wang TS, Li X, Wang YP (Sep 2016). "SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation". Sci Rep. 6: 32734. Bibcode:2016NatSR...632734X. doi:10.1038/srep32734. PMC   5009355 . PMID   27586085.
  10. Cappadoro M, Giribaldi G, O'Brien E, et al. (October 1998). "Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency". Blood. 92 (7): 2527–34. doi: 10.1182/blood.V92.7.2527 . PMID   9746794.