Substrate-level phosphorylation

Last updated
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP Substrate-level phosphorylation generating ATP.svg
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP

Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level phosphorylation"). This process uses some of the released chemical energy, the Gibbs free energy, to transfer a phosphoryl (PO3) group to ADP or GDP. Occurs in glycolysis and in the citric acid cycle. [1]

Contents

Unlike oxidative phosphorylation, oxidation and phosphorylation are not coupled in the process of substrate-level phosphorylation, and reactive intermediates are most often gained in the course of oxidation processes in catabolism. Most ATP is generated by oxidative phosphorylation in aerobic or anaerobic respiration while substrate-level phosphorylation provides a quicker, less efficient source of ATP, independent of external electron acceptors. This is the case in human erythrocytes, which have no mitochondria, and in oxygen-depleted muscle.

Overview

Adenosine triphosphate (ATP) is a major "energy currency" of the cell. [2] The high energy bonds between the phosphate groups can be broken to power a variety of reactions used in all aspects of cell function. [3]

Substrate-level phosphorylation occurs in the cytoplasm of cells during glycolysis and in mitochondria either during the Krebs cycle or by MTHFD1L (EC 6.3.4.3), an enzyme interconverting ADP + phosphate + 10-formyltetrahydrofolate to ATP + formate + tetrahydrofolate (reversibly), under both aerobic and anaerobic conditions. In the pay-off phase of glycolysis, a net of 2 ATP are produced by substrate-level phosphorylation.

Glycolysis

The first substrate-level phosphorylation occurs after the conversion of 3-phosphoglyceraldehyde and Pi and NAD+ to 1,3-bisphosphoglycerate via glyceraldehyde 3-phosphate dehydrogenase. 1,3-bisphosphoglycerate is then dephosphorylated via phosphoglycerate kinase, producing 3-phosphoglycerate and ATP through a substrate-level phosphorylation.

The second substrate-level phosphorylation occurs by dephosphorylating phosphoenolpyruvate, catalyzed by pyruvate kinase, producing pyruvate and ATP.

During the preparatory phase, each 6-carbon glucose molecule is broken into two 3-carbon molecules. Thus, in glycolysis dephosphorylation results in the production of 4 ATP. However, the prior preparatory phase consumes 2 ATP, so the net yield in glycolysis is 2 ATP. 2 molecules of NADH are also produced and can be used in oxidative phosphorylation to generate more ATP.

Mitochondria

ATP can be generated by substrate-level phosphorylation in mitochondria in a pathway that is independent from the proton motive force. In the matrix there are three reactions capable of substrate-level phosphorylation, utilizing either phosphoenolpyruvate carboxykinase or succinate-CoA ligase, or monofunctional C1-tetrahydrofolate synthase.

Phosphoenolpyruvate carboxykinase

Mitochondrial phosphoenolpyruvate carboxykinase is thought to participate in the transfer of the phosphorylation potential from the matrix to the cytosol and vice versa. [4] [5] [6] [7] [8] However, it is strongly favored towards GTP hydrolysis, thus it is not really considered as an important source of intra-mitochondrial substrate-level phosphorylation.

Succinate-CoA ligase

Succinate-CoA ligase is a heterodimer composed of an invariant α-subunit and a substrate-specific ß-subunit, encoded by either SUCLA2 or SUCLG2. This combination results in either an ADP-forming succinate-CoA ligase (A-SUCL, EC 6.2.1.5) or a GDP-forming succinate-CoA ligase (G-SUCL, EC 6.2.1.4). The ADP-forming succinate-CoA ligase is potentially the only matrix enzyme generating ATP in the absence of a proton motive force, capable of maintaining matrix ATP levels under energy-limited conditions, such as transient hypoxia.

Monofunctional C1-tetrahydrofolate synthase

This enzyme is encoded by MTHFD1L and reversibly interconverts ADP + phosphate + 10-formyltetrahydrofolate to ATP + formate + tetrahydrofolate.

Other mechanisms

In working skeletal muscles and the brain, Phosphocreatine is stored as a readily available high-energy phosphate supply, and the enzyme creatine phosphokinase transfers a phosphate from phosphocreatine to ADP to produce ATP. Then the ATP releases giving chemical energy. This is sometimes erroneously considered to be substrate-level phosphorylation, although it is a transphosphorylation.

Importance of substrate-level phosphorylation in anoxia

During anoxia, provision of ATP by substrate-level phosphorylation in the matrix is important not only as a mere means of energy, but also to prevent mitochondria from straining glycolytic ATP reserves by maintaining the adenine nucleotide translocator in ‘forward mode’ carrying ATP towards the cytosol. [9] [10] [11]

Oxidative phosphorylation

An alternative method used to create ATP is through oxidative phosphorylation, which takes place during cellular respiration. This process utilizes the oxidation of NADH to NAD+, yielding 3 ATP, and of FADH2 to FAD, yielding 2 ATP. The potential energy stored as an electrochemical gradient of protons (H+) across the inner mitochondrial membrane is required to generate ATP from ADP and Pi (inorganic phosphate molecule), a key difference from substrate-level phosphorylation. This gradient is exploited by ATP synthase acting as a pore, allowing H+ from the mitochondrial intermembrane space to move down its electrochemical gradient into the matrix and coupling the release of free energy to ATP synthesis. Conversely, electron transfer provides the energy required to actively pump H+ out of the matrix.

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known forms of life, it is often referred to as the "molecular unit of currency" for intracellular energy transfer.

<span class="mw-page-title-main">Citric acid cycle</span> Interconnected biochemical reactions releasing energy

The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol. The chemical energy released is available in the form of ATP. The Krebs cycle is used by organisms that respire to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a "cycle", it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

<span class="mw-page-title-main">Metabolic pathway</span> Linked series of chemical reactions occurring within a cell

In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell.

<span class="mw-page-title-main">Oxidative phosphorylation</span> Metabolic pathway

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative fermentation processes such as anaerobic glycolysis.

<span class="mw-page-title-main">Adenosine diphosphate</span> Chemical compound

Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon.

<span class="mw-page-title-main">Cellular respiration</span> Process to convert glucose to ATP in cells

Cellular respiration is the process by which biological fuels are oxidized in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products.

Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms – the other being degradation of glycogen (glycogenolysis) – used by humans and many other animals to maintain blood sugar levels, avoiding low levels (hypoglycemia). In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise.

<span class="mw-page-title-main">Guanosine triphosphate</span> Chemical compound

Guanosine-5'-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only difference being that nucleotides like GTP have phosphates on their ribose sugar. GTP has the guanine nucleobase attached to the 1' carbon of the ribose and it has the triphosphate moiety attached to ribose's 5' carbon.

<span class="mw-page-title-main">Oxaloacetic acid</span> Organic compound

Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle.

<span class="mw-page-title-main">Mitochondrial matrix</span> Space within the inner membrane of the mitochondrion

In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids.

The adenylate energy charge is an index used to measure the energy status of biological cells.

<span class="mw-page-title-main">Phosphoenolpyruvic acid</span> Chemical compound

Phosphoenolpyruvate is the carboxylic acid derived from the enol of pyruvate and phosphate. It exists as an anion. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found in organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system.

<span class="mw-page-title-main">1,3-Bisphosphoglyceric acid</span> Chemical compound

1,3-Bisphosphoglyceric acid (1,3-Bisphosphoglycerate or 1,3BPG) is a 3-carbon organic molecule present in most, if not all, living organisms. It primarily exists as a metabolic intermediate in both glycolysis during respiration and the Calvin cycle during photosynthesis. 1,3BPG is a transitional stage between glycerate 3-phosphate and glyceraldehyde 3-phosphate during the fixation/reduction of CO2. 1,3BPG is also a precursor to 2,3-bisphosphoglycerate which in turn is a reaction intermediate in the glycolytic pathway.

<span class="mw-page-title-main">Succinyl coenzyme A synthetase</span> Class of enzymes

Succinyl coenzyme A synthetase is an enzyme that catalyzes the reversible reaction of succinyl-CoA to succinate. The enzyme facilitates the coupling of this reaction to the formation of a nucleoside triphosphate molecule from an inorganic phosphate molecule and a nucleoside diphosphate molecule. It plays a key role as one of the catalysts involved in the citric acid cycle, a central pathway in cellular metabolism, and it is located within the mitochondrial matrix of a cell.

<span class="mw-page-title-main">Phosphoenolpyruvate carboxykinase</span> Enzyme

Phosphoenolpyruvate carboxykinase is an enzyme in the lyase family used in the metabolic pathway of gluconeogenesis. It converts oxaloacetate into phosphoenolpyruvate and carbon dioxide.

Translocase is a general term for a protein that assists in moving another molecule, usually across a cell membrane. These enzymes catalyze the movement of ions or molecules across membranes or their separation within membranes. The reaction is designated as a transfer from “side 1” to “side 2” because the designations “in” and “out”, which had previously been used, can be ambiguous. Translocases are the most common secretion system in Gram positive bacteria.

<span class="mw-page-title-main">Formate–tetrahydrofolate ligase</span>

In enzymology, a formate—tetrahydrofolate ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">SUCLA2</span> Protein-coding gene in the species Homo sapiens

Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial (SUCLA2), also known as ADP-forming succinyl-CoA synthetase (SCS-A), is an enzyme that in humans is encoded by the SUCLA2 gene on chromosome 13.

<span class="mw-page-title-main">Creatine phosphate shuttle</span> Intracellular energy shuttle in muscles

The creatine phosphate shuttle is an intracellular energy shuttle which facilitates transport of high energy phosphate from muscle cell mitochondria to myofibrils. This is part of phosphocreatine metabolism. In mitochondria, Adenosine triphosphate (ATP) levels are very high as a result of glycolysis, TCA cycle, oxidative phosphorylation processes, whereas creatine phosphate levels are low. This makes conversion of creatine to phosphocreatine a highly favored reaction. Phosphocreatine is a very-high-energy compound. It then diffuses from mitochondria to myofibrils.

References

  1. Freeman, Scott (2020). Biological science. Quillin, Kim, Allison, Lizabeth A., 1958-, Black, Michael (Lecturer in biology), Podgorski, Greg, Taylor, Emily (Lecturer in biological sciences), Carmichael, Jeff. (Seventh ed.). Hoboken, NJ. ISBN   978-0-13-467832-0. OCLC   1043972098.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Skulachev, Vladimir P.; Bogachev, Alexander V.; Kasparinsky, Felix O. (15 December 2012). Principles of Bioenergetics. Springer Science & Business Media. p. 252. ISBN   978-3-642-33430-6.
  3. Agteresch, Hendrik J.; Dagnelie, Pieter C.; van den Berg, J Willem; Wilson, J H. (1999). "Adenosine Triphosphate". Drugs. 58 (2): 211–232. doi:10.2165/00003495-199958020-00002. ISSN   0012-6667. PMID   10473017. S2CID   46974766.
  4. Lambeth DO, Tews KN, Adkins S, Frohlich D, Milavetz BI (2004). "Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues". The Journal of Biological Chemistry. 279 (35): 36621–4. doi: 10.1074/jbc.M406884200 . PMID   15234968.
  5. Ottaway JH, McClellan JA, Saunderson CL (1981). "Succinic thiokinase and metabolic control". The International Journal of Biochemistry. 13 (4): 401–10. doi:10.1016/0020-711x(81)90111-7. PMID   6263728.
  6. Lambeth DO (2002). "What is the function of GTP produced in the Krebs citric acid cycle?". IUBMB Life. 54 (3): 143–4. doi: 10.1080/15216540214539 . PMID   12489642.
  7. Wilson DF, Erecińska M, Schramm VL (1983). "Evaluation of the relationship between the intra- and extramitochondrial ATP/ADP ratios using phosphoenolpyruvate carboxykinase". The Journal of Biological Chemistry. 258 (17): 10464–73. doi: 10.1016/S0021-9258(17)44479-6 . PMID   6885788.
  8. Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO (1998). "Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes". The Journal of Biological Chemistry. 273 (42): 27580–6. doi: 10.1074/jbc.273.42.27580 . PMID   9765291.
  9. Chinopoulos, C; Gerencser, AA; Mandi, M; Mathe, K; Töröcsik, B; Doczi, J; Turiak, L; Kiss, G; Konràd, C; Vajda, S; Vereczki, V; Oh, RJ; Adam-Vizi, V (2010). "Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation". FASEB J. 24 (7): 2405–16. doi: 10.1096/fj.09-149898 . PMC   2887268 . PMID   20207940.
  10. Chinopoulos, C (2011). "Mitochondrial consumption of cytosolic ATP: not so fast". FEBS Lett. 585 (9): 1255–9. Bibcode:2011FEBSL.585.1255C. doi: 10.1016/j.febslet.2011.04.004 . PMID   21486564. S2CID   24773903.
  11. Chinopoulos, C (2011). "The "B space" of mitochondrial phosphorylation". J Neurosci Res. 89 (12): 1897–904. doi: 10.1002/jnr.22659 . PMID   21541983.