Isozyme

Last updated

In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters (e.g. different KM values), or are regulated differently. They permit the fine-tuning of metabolism to meet the particular needs of a given tissue or developmental stage.

Contents

In many cases, isozymes are encoded by homologous genes that have diverged over time. Strictly speaking, enzymes with different amino acid sequences that catalyse the same reaction are isozymes if encoded by different genes, or allozymes if encoded by different alleles of the same gene; the two terms are often used interchangeably.

Introduction

Isozymes were first described by R. L. Hunter and Clement Markert (1957) who defined them as different variants of the same enzyme having identical functions and present in the same individual. [1] This definition encompasses (1) enzyme variants that are the product of different genes and thus represent different loci (described as isozymes) and (2) enzymes that are the product of different alleles of the same gene (described as allozymes). [2]

Isozymes are usually the result of gene duplication, but can also arise from polyploidisation or nucleic acid hybridization. Over evolutionary time, if the function of the new variant remains identical to the original, then it is likely that one or the other will be lost as mutations accumulate, resulting in a pseudogene. However, if the mutations do not immediately prevent the enzyme from functioning, but instead modify either its function, or its pattern of expression, then the two variants may both be favoured by natural selection and become specialised to different functions. [3] For example, they may be expressed at different stages of development or in different tissues. [4]

Allozymes may result from point mutations or from insertion-deletion (indel) events that affect the coding sequence of the gene. As with any other new mutations, there are three things that may happen to a new allozyme:

Examples

An example of an isozyme is glucokinase, a variant of hexokinase which is not inhibited by glucose 6-phosphate. Its different regulatory features and lower affinity for glucose (compared to other hexokinases), allow it to serve different functions in cells of specific organs, such as control of insulin release by the beta cells of the pancreas, or initiation of glycogen synthesis by liver cells. Both these processes must only occur when glucose is abundant.

The 5 isozymes of LDH Isoenzyme1.jpg
The 5 isozymes of LDH
Distinction between five isozymes using electrophoresis Isoenzyme2.jpg
Distinction between five isozymes using electrophoresis

1.) The enzyme lactate dehydrogenase is a tetramer made of two different sub-units, the H-form and the M-form. These combine in different combinations depending on the tissue: [7]

TypeCompositionLocationElectrophoretic MobilityWhether destroyed by

Heat (at 60 °C)

Percentage of normal

serum in humans

LDH1HHHHHeart and ErythrocyteFastestNo25%
LDH2HHHMHeart and ErythrocyteFasterNo35%
LDH3HHMMBrain and KidneyFastPartially27%
LDH4HMMMSkeletal Muscle and LiverSlowYes8%
LDH5MMMMSkeletal Muscle and LiverSlowestYes5%

2.) Isoenzymes of creatine phosphokinase: [7] Creatine kinase (CK) or creatine phosphokinase (CPK) catalyses the interconversion of phospho creatine to creatine .

CPK exists in 3 isoenzymes. Each isoenzymes is a dimer of 2 subunits M (muscle), B (brain) or both [7]

IsoenzymeSubunitTissue of Origin
CPK1BBBrain
CPK2MBHeart
CPK3MMSkeletal muscle

3.) Isoenzymes of alkaline phosphatase: [7] Six isoenzymes have been identified. The enzyme is a monomer, the isoenzymes are due to the differences in the carbohydrate content (sialic acid residues). The most important ALP isoenzymes are α1-ALP, α2-heat labile ALP, α2-heat stable ALP, pre-β ALP and γ-ALP. Increase in α2-heat labile ALP suggests hepatitis whereas pre-β ALP indicates bone diseases.

Distinguishing isozymes

Isozymes (and allozymes) are variants of the same enzyme. Unless they are identical in their biochemical properties, for example their substrates and enzyme kinetics, they may be distinguished by a biochemical assay. However, such differences are usually subtle, particularly between allozymes which are often neutral variants. This subtlety is to be expected, because two enzymes that differ significantly in their function are unlikely to have been identified as isozymes.

While isozymes may be almost identical in function, they may differ in other ways. In particular, amino acid substitutions that change the electric charge of the enzyme are simple to identify by gel electrophoresis, and this forms the basis for the use of isozymes as molecular markers. To identify isozymes, a crude protein extract is made by grinding animal or plant tissue with an extraction buffer, and the components of extract are separated according to their charge by gel electrophoresis. Historically, this has usually been done using gels made from potato starch, but acrylamide gels provide better resolution.

All the proteins from the tissue are present in the gel, so that individual enzymes must be identified using an assay that links their function to a staining reaction. For example, detection can be based on the localised precipitation of soluble indicator dyes such as tetrazolium salts which become insoluble when they are reduced by cofactors such as NAD or NADP, which generated in zones of enzyme activity. This assay method requires that the enzymes are still functional after separation (native gel electrophoresis), and provides the greatest challenge to using isozymes as a laboratory technique.

Isoenzymes differ in kinetics (they have different KM and Vmax values).

Isozymes and allozymes as molecular markers

Population genetics is essentially a study of the causes and effects of genetic variation within and between populations, and in the past, isozymes have been amongst the most widely used molecular markers for this purpose. Although they have now been largely superseded by more informative DNA-based approaches (such as direct DNA sequencing, single nucleotide polymorphisms and microsatellites), they are still among the quickest and cheapest marker systems to develop, and remain (as of 2005) an excellent choice for projects that only need to identify low levels of genetic variation, e.g. quantifying mating systems.

Other major examples

Related Research Articles

Molecular biology is a branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second is called recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance, such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes and co-dominance, in which different variants on each chromosome both show their associated traits.

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, the evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

Biology is the study of life and its processes. Biologists study all aspects of living things, including all of the many life forms on earth and the processes in them that enable life. These basic processes include the harnessing of energy, the synthesis and duplication of the materials that make up the body, the reproduction of the organism and many other functions. Biology, along with chemistry and physics is one of the major disciplines of natural science.

<span class="mw-page-title-main">Molecular genetics</span> Scientific study of genes at the molecular level

Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens. 

<span class="mw-page-title-main">Protein isoform</span> Forms of a protein produced from different genes

A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have unique functions. A set of protein isoforms may be formed from alternative splicings, variable promoter usage, or other post-transcriptional modifications of a single gene; post-translational modifications are generally not considered. Through RNA splicing mechanisms, mRNA has the ability to select different protein-coding segments (exons) of a gene, or even different parts of exons from RNA to form different mRNA sequences. Each unique sequence produces a specific form of a protein.

<span class="mw-page-title-main">Single-nucleotide polymorphism</span> Single nucleotide in genomic DNA at which different sequence alternatives exist

In genetics and bioinformatics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome that is present in a sufficiently large fraction of considered population.

Glutathione <i>S</i>-transferase Family of enzymes

Glutathione S-transferases (GSTs), previously known as ligandins, are a family of eukaryotic and prokaryotic phase II metabolic isozymes best known for their ability to catalyze the conjugation of the reduced form of glutathione (GSH) to xenobiotic substrates for the purpose of detoxification. The GST family consists of three superfamilies: the cytosolic, mitochondrial, and microsomal—also known as MAPEG—proteins. Members of the GST superfamily are extremely diverse in amino acid sequence, and a large fraction of the sequences deposited in public databases are of unknown function. The Enzyme Function Initiative (EFI) is using GSTs as a model superfamily to identify new GST functions.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

A null allele is a nonfunctional allele caused by a genetic mutation. Such mutations can cause a complete lack of production of the associated gene product or a product that does not function properly; in either case, the allele may be considered nonfunctional. A null allele cannot be distinguished from deletion of the entire locus solely from phenotypic observation.

Dr George B. Johnson is a science educator who for many years has written a weekly column "On Science" in the St. Louis Post-Dispatch. For over 30 years he was a biology professor at Washington University and a genetics professor at Washington University School of Medicine. He has authored 44 scientific papers and ten high school and college biology texts. Over 3 million students have learned biology from these texts.

<span class="mw-page-title-main">Introduction to genetics</span> Non-technical introduction to the subject of genetics

Genetics is the study of genes and tries to explain what they are and how they work. Genes are how living organisms inherit features or traits from their ancestors; for example, children usually look like their parents because they have inherited their parents' genes. Genetics tries to identify which traits are inherited and to explain how these traits are passed from generation to generation.

<span class="mw-page-title-main">ALDH2</span> Enzyme

Aldehyde dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the ALDH2 gene located on chromosome 12. ALDH2 belongs to the aldehyde dehydrogenase family of enzymes. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. ALDH2 has a low Km for acetaldehyde, and is localized in mitochondrial matrix. The other liver isozyme, ALDH1, localizes to the cytosol.

Alloenzymes are variant forms of an enzyme which differ structurally but not functionally from other allozymes coded for by different alleles at the same locus. These are opposed to isozymes, which are enzymes that perform the same function, but which are coded by genes located at different loci.

<span class="mw-page-title-main">ALPL</span> Protein-coding gene in the species Homo sapiens

Alkaline phosphatase, tissue-nonspecific isozyme is an enzyme that in humans is encoded by the ALPL gene.

<span class="mw-page-title-main">Aldehyde dehydrogenase 18 family, member A1</span> Protein-coding gene in the species Homo sapiens

Delta-1-pyrroline-5-carboxylate synthetase (P5CS) is an enzyme that in humans is encoded by the ALDH18A1 gene. This gene is a member of the aldehyde dehydrogenase family and encodes a bifunctional ATP- and NADPH-dependent mitochondrial enzyme with both gamma-glutamyl kinase and gamma-glutamyl phosphate reductase activities. The encoded protein catalyzes the reduction of glutamate to delta1-pyrroline-5-carboxylate, a critical step in the de novo biosynthesis of proline, ornithine and arginine. Mutations in this gene lead to hyperammonemia, hypoornithinemia, hypocitrullinemia, hypoargininemia and hypoprolinemia and may be associated with neurodegeneration, cataracts and connective tissue diseases. Alternatively spliced transcript variants, encoding different isoforms, have been described for this gene. As reported by Bruno Reversade and colleagues, ALDH18A1 deficiency or dominant-negative mutations in P5CS in humans causes a progeroid disease known as De Barsy Syndrome.

<span class="mw-page-title-main">Subfunctionalization</span>

Subfunctionalization was proposed by Stoltzfus (1999) and Force et al. (1999) as one of the possible outcomes of functional divergence that occurs after a gene duplication event, in which pairs of genes that originate from duplication, or paralogs, take on separate functions. Subfunctionalization is a neutral mutation process of constructive neutral evolution; meaning that no new adaptations are formed. During the process of gene duplication paralogs simply undergo a division of labor by retaining different parts (subfunctions) of their original ancestral function. This partitioning event occurs because of segmental gene silencing leading to the formation of paralogs that are no longer duplicates, because each gene only retains a single function. It is important to note that the ancestral gene was capable of performing both functions and the descendant duplicate genes can now only perform one of the original ancestral functions.

<span class="mw-page-title-main">Leslie D. Gottlieb</span> American biologist

Leslie David Gottlieb (1936–2012) was a United States biologist described by the Botanical Society of America as "one of the most influential plant evolutionary biologists over the past several decades". He was employed at the University of California, Davis for 34 years, and published widely. In addition to his primary work in plant genetics, Gottlieb was an advocate for rare and endangered plant conservation.

Glycogen phosphorylase, liver form (PYGL), also known as human liver glycogen phosphorylase (HLGP), is an enzyme that in humans is encoded by the PYGL gene on chromosome 14. This gene encodes a homodimeric protein that catalyses the cleavage of alpha-1,4-glucosidic bonds to release glucose-1-phosphate from liver glycogen stores. This protein switches from inactive phosphorylase B to active phosphorylase A by phosphorylation of serine residue 14. Activity of this enzyme is further regulated by multiple allosteric effectors and hormonal controls. Humans have three glycogen phosphorylase genes that encode distinct isozymes that are primarily expressed in liver, brain and muscle, respectively. The liver isozyme serves the glycemic demands of the body in general while the brain and muscle isozymes supply just those tissues. In glycogen storage disease type VI, also known as Hers disease, mutations in liver glycogen phosphorylase inhibit the conversion of glycogen to glucose and results in moderate hypoglycemia, mild ketosis, growth retardation and hepatomegaly. Alternative splicing results in multiple transcript variants encoding different isoforms [provided by RefSeq, Feb 2011].

This glossary of cell and molecular biology is a list of definitions of terms and concepts commonly used in the study of cell biology, molecular biology, and related disciplines, including genetics, microbiology, and biochemistry. It is split across two articles:

References

Specific
  1. Markert, Clement L.; Moller, Freddy (1959). "Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns". Proceedings of the National Academy of Sciences of the United States of America. 45 (5): 753–763. doi: 10.1073/pnas.45.5.753 . PMC   222630 . PMID   16590440.
  2. Kearney (2014). Fundamental Genetics (3rd ed.). McNaughton Publishing. pp. 413–414.
  3. Gerald, Gerald (2015). The Biology Book: From the Origin of Life to Epigenetics, 250 Milestones in the History of Biology. Sterling. p. 79.
  4. Huang, Le (2009). Genome. Grady-McPherson. p. 299.
  5. Alberts (2017). Molecular Biology of the Cell (6th ed.). Garland Science. p. 649.
  6. 1 2 Walstrom, Ford; et al. (2014). "Models of genetics and natural selection: a current biomolecular understanding". Biomolecular Ecology. 70 (2): 1021–1034.
  7. 1 2 3 4 Satyanarayana, U. (2002). Biochemistry (2nd ed.). Kolkata, India: Books and Allied. ISBN   8187134801. OCLC   71209231.