HIOC

Last updated
HIOC
HIOC.svg
Clinical data
ATC code
  • None
Identifiers
  • N-[2-(5-Hydroxy-1H-indol-3-yl)ethyl]-2-oxo-3-piperidinecarboxamide
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C16H19N3O3
Molar mass 301.346 g·mol−1
3D model (JSmol)
  • c1cc2c(cc1O)c(c[nH]2)CCNC(=O)C3CCCNC3=O
  • InChI=1S/C16H19N3O3/c20-11-3-4-14-13(8-11)10(9-19-14)5-7-18-16(22)12-2-1-6-17-15(12)21/h3-4,8-9,12,19-20H,1-2,5-7H2,(H,17,21)(H,18,22)
  • Key:ZIMKJLALTRLXJO-UHFFFAOYSA-N

HIOC is a small-molecule agent which acts as a selective TrkB receptor agonist (active at at least 100 nM; prominent activation at 500 nM). [1] [2] [3] It was derived from N-acetylserotonin (NAS). [2] [3] [4] Relative to NAS, HIOC possesses greater potency and a longer half-life (~30 min or less for NAS in rats, while HIOC is still detectable up to 24 hours after administration to mice; ~4 hour half-life for HIOC in mouse brain tissues). [2] [3] It is described as producing long-lasting activation of the TrkB receptor and downstream signaling kinases associated with the receptor. [2] HIOC is systemically-active and is able to penetrate the blood-brain-barrier. [2] In animal studies, HIOC was found to robustly protect against glutamate-induced excitotoxicity, an action which was TrkB-dependent. [3]

A chemical synthesis of HIOC was published in 2015. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Brain-derived neurotrophic factor</span> Protein

Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein that, in humans, is encoded by the BDNF gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canonical nerve growth factor (NGF), a family which also includes NT-3 and NT-4/NT-5. Neurotrophic factors are found in the brain and the periphery. BDNF was first isolated from a pig brain in 1982 by Yves-Alain Barde and Hans Thoenen.

<span class="mw-page-title-main">Nerve growth factor</span> Mammalian protein found in Homo sapiens

Nerve growth factor (NGF) is a neurotrophic factor and neuropeptide primarily involved in the regulation of growth, maintenance, proliferation, and survival of certain target neurons. It is perhaps the prototypical growth factor, in that it was one of the first to be described. Since it was first isolated by Nobel Laureates Rita Levi-Montalcini and Stanley Cohen in 1956, numerous biological processes involving NGF have been identified, two of them being the survival of pancreatic beta cells and the regulation of the immune system.

<span class="mw-page-title-main">Tropomyosin receptor kinase A</span> Protein-coding gene in the species Homo sapiens

Tropomyosin receptor kinase A (TrkA), also known as high affinity nerve growth factor receptor, neurotrophic tyrosine kinase receptor type 1, or TRK1-transforming tyrosine kinase protein is a protein that in humans is encoded by the NTRK1 gene.

<span class="mw-page-title-main">Tropomyosin receptor kinase B</span> Protein and coding gene in humans

Tropomyosin receptor kinase B (TrkB), also known as tyrosine receptor kinase B, or BDNF/NT-3 growth factors receptor or neurotrophic tyrosine kinase, receptor, type 2 is a protein that in humans is encoded by the NTRK2 gene. TrkB is a receptor for brain-derived neurotrophic factor (BDNF). Standard pronunciation is "track bee".

<span class="mw-page-title-main">Tropomyosin receptor kinase C</span>

Tropomyosin receptor kinase C (TrkC), also known as NT-3 growth factor receptor, neurotrophic tyrosine kinase receptor type 3, or TrkC tyrosine kinase is a protein that in humans is encoded by the NTRK3 gene.

<span class="mw-page-title-main">Neurotrophin-3</span>

Neurotrophin-3 is a protein that in humans is encoded by the NTF3 gene.

<i>N</i>-Acetylserotonin Chemical compound

N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects.

<span class="mw-page-title-main">DDR1</span> Protein-coding gene in the species Homo sapiens

Discoidin domain receptor family, member 1, also known as DDR1 or CD167a, is a human gene.

<span class="mw-page-title-main">SHC3</span> Protein-coding gene in the species Homo sapiens

SHC-transforming protein 3 is a protein that in humans is encoded by the SHC3 gene.

<span class="mw-page-title-main">Gossypetin</span> Chemical compound

Gossypetin, also known as 3,5,7,8,3',4'-hexahydroxyflavone, is a flavonol, a type of flavonoid. It has been isolated from the flowers and the calyx of Hibiscus sabdariffa (roselle) and exhibits a strong antibacterial activity. The compound has also been found to act as an antagonist of TrkB. Recently it was shown that gossypetin has radioprotective activity.

<span class="mw-page-title-main">Diosmetin</span> Chemical compound

Diosmetin, also known as 5,7,3′-trihydroxy-4′-methoxyflavone, is an O-methylated flavone, a chemical compound that can be found in the Caucasian vetch.

<span class="mw-page-title-main">Tropoflavin</span> Chemical compound

Tropoflavin, also known as 7,8-dihydroxyflavone, is a naturally occurring flavone found in Godmania aesculifolia, Tridax procumbens, and primula tree leaves. It has been found to act as a potent and selective small-molecule agonist of the tropomyosin receptor kinase B (TrkB), the main signaling receptor of the neurotrophin brain-derived neurotrophic factor (BDNF). Tropoflavin is both orally bioavailable and able to penetrate the blood–brain barrier. A prodrug of tropoflavin with greatly improved potency and pharmacokinetics, R13, is under development for the treatment of Alzheimer's disease.

<span class="mw-page-title-main">Deoxygedunin</span>

Deoxygedunin, or 14,15-deoxygedunin, is a tetranortriterpenoid isolated from the Indian neem tree a plant that has been in traditional Indian medicine since ancient times as a remedy for various ailments.

<span class="mw-page-title-main">ANA-12</span> Chemical compound

ANA-12 is a selective, small-molecule non-competitive antagonist of TrkB, the main receptor of brain-derived neurotrophic factor (BDNF). The compound crosses the blood-brain-barrier and exerts central TrkB blockade, producing effects as early as 30 minutes and as long as 6 hours following intraperitoneal injection in mice. It blocks the neurotrophic actions of BDNF without compromising neuron survival.

<span class="mw-page-title-main">LM22A-4</span> Chemical compound

LM22A-4 is a synthetic, selective small-molecule partial agonist of TrkB (EC50 for TrkB activation = 200–500 pM; IC50 for inhibition of BDNF binding to TrkB = 47 nM; IA = ~85%), the main receptor of brain-derived neurotrophic factor. It has been found to possess poor blood-brain-barrier penetration when administered systemically, so LM22A-4 has been given to animals instead via intranasal administration, with central nervous system TrkB activation observed. The compound produces neurogenic and neuroprotective effects in animals, and shows beneficial effects on respiration in animal models of Rett syndrome.

<span class="mw-page-title-main">R7 (drug)</span>

R7 is a small-molecule flavonoid and orally active, potent, and selective agonist of the tropomyosin receptor kinase B (TrkB) – the main signaling receptor for the neurotrophin brain-derived neurotrophic factor (BDNF) – which is under development for the treatment of Alzheimer's disease. It is a structural modification and prodrug of tropoflavin (7,8-DHF) with improved potency and pharmacokinetics, namely oral bioavailability and duration. R7 was synthesized by the same researchers who were involved in the discovery of tropoflavin. A patent was filed for R7 in 2013 and was published in 2015. In 2016, it was reported to be in the preclinical stage of development. R7 was superseded by R13 because while R7 had a good drug profile in animals, it showed almost no conversion into tropoflavin in human liver microsomes.

<span class="mw-page-title-main">7,8,3'-Trihydroxyflavone</span>

7,8,3′-Trihydroxyflavone (7,8,3'-THF) is a flavone and small-molecule agonist of TrkB, the main receptor of brain-derived neurotrophic factor (BDNF), that was derived from tropoflavin (7,8-DHF). Relative to tropoflavin, 7,8,3'-THF is 2–3-fold more potent in vitro as a TrkB agonist. 7,3’-Dihydroxyflavone (7,3'-DHF) is also more potent than tropoflavin in vitro, indicating that a 3'-hydroxy group on the B-ring enhances TrkB agonistic activity. 7,8,3'-THF has been tested in vivo and was found to produce TrkB-dependent neuroprotective effects in mice similarly to tropoflavin.

<span class="mw-page-title-main">Eutropoflavin</span>

Eutropoflavin (4'-Dimethylamino-7,8-dihydroxyflavone) is a synthetic flavone and selective small-molecule agonist of TrkB, the main receptor of brain-derived neurotrophic factor (BDNF), which was derived from structural modification of tropoflavin (7,8-DHF). Relative to tropoflavin, eutropoflavin possesses higher agonistic activity at TrkB, is significantly more potent than tropoflavin both in vitro and in vivo, and has a longer duration of action. The compound has been found to produce neuroprotective and neurogenic effects in the brain and spinal cord as well as antidepressant-like effects in animals.

<span class="mw-page-title-main">R13 (drug)</span>

R13 is a small-molecule flavonoid and orally active, potent, and selective agonist of the tropomyosin receptor kinase B (TrkB) – the main signaling receptor for the neurotrophin brain-derived neurotrophic factor (BDNF) – which is under development for the potential treatment of Alzheimer's disease. It is a structural modification and prodrug of tropoflavin (7,8-DHF) with improved potency and pharmacokinetics, namely oral bioavailability and duration. The compound is a replacement for the earlier tropoflavin prodrug R7 and has similar properties to it. It was developed because while R7 displayed a good drug profile in animal studies, it showed almost no conversion into tropoflavin in human liver microsomes. In contrast to R7, R13 is readily hydrolyzed into tropoflavin in human liver microsomes.

Neurotrophin mimetics are small molecules or peptide like molecules that can modulate the action of the neurotrophin receptor. One of the main causes of neurodegeneration involves changes in the expression of neurotrophins (NTs) and/or their receptors. Indeed, these imbalances or changes in their activity, lead to neuronal damage resulting in neurological and neurodegenerative conditions. The therapeutic properties of neurotrophins attracted the focus of many researchers during the years, but the poor pharmacokinetic properties, such as reduced bioavailability and low metabolic stability, the hyperalgesia, the inability to penetrate the blood–brain barrier and the short half-lives render the large neurotrophin proteins not suitable to be implemented as drugs.

References

  1. Longo, Frank M.; Massa, Stephen M. (2013). "Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease". Nature Reviews Drug Discovery. 12 (7): 507–525. doi:10.1038/nrd4024. ISSN   1474-1776. PMID   23977697. S2CID   33597483.
  2. 1 2 3 4 5 Iuvone, P. Michael; Boatright, Jeffrey H.; Tosini, Gianluca; Ye, Keqiang (2014). "N-Acetylserotonin: Circadian Activation of the BDNF Receptor and Neuroprotection in the Retina and Brain". Advances in Experimental Medicine and Biology. 801: 765–771. doi:10.1007/978-1-4614-3209-8_96. ISBN   978-1-4614-3208-1. ISSN   0065-2598. PMC   4069859 . PMID   24664769.
  3. 1 2 3 4 Shen, J.; Ghai, K.; Sompol, P.; Liu, X.; Cao, X.; Iuvone, P. M.; Ye, K. (2012). "N-acetyl serotonin derivatives as potent neuroprotectants for retinas". Proceedings of the National Academy of Sciences. 109 (9): 3540–3545. doi: 10.1073/pnas.1119201109 . ISSN   0027-8424. PMC   3295250 . PMID   22331903.
  4. Tosini, G.; Ye, K.; Iuvone, P. M. (2012). "N-Acetylserotonin: Neuroprotection, Neurogenesis, and the Sleepy Brain". The Neuroscientist. 18 (6): 645–653. doi:10.1177/1073858412446634. ISSN   1073-8584. PMC   3422380 . PMID   22585341.
  5. Setterholm NA, McDonald FE, Boatright JH, Iuvone PM (2015). "Gram-scale, chemoselective synthesis of N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC)". Tetrahedron Lett. 56 (23): 3413–3415. doi:10.1016/j.tetlet.2015.01.167. PMC   4445863 . PMID   26028783.